This commit is contained in:
krahets
2024-05-01 07:30:15 +08:00
parent 85f0bc4ed1
commit d246e08cc6
68 changed files with 220 additions and 220 deletions

View File

@ -3633,7 +3633,7 @@
<p class="admonition-title">Climbing stairs</p>
<p>Given a staircase with <span class="arithmatex">\(n\)</span> steps, where you can climb <span class="arithmatex">\(1\)</span> or <span class="arithmatex">\(2\)</span> steps at a time, how many different ways are there to reach the top?</p>
</div>
<p>As shown in the Figure 14-1 , there are <span class="arithmatex">\(3\)</span> ways to reach the top of a <span class="arithmatex">\(3\)</span>-step staircase.</p>
<p>As shown in Figure 14-1, there are <span class="arithmatex">\(3\)</span> ways to reach the top of a <span class="arithmatex">\(3\)</span>-step staircase.</p>
<p><a class="glightbox" href="../intro_to_dynamic_programming.assets/climbing_stairs_example.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="Number of ways to reach the 3rd step" class="animation-figure" src="../intro_to_dynamic_programming.assets/climbing_stairs_example.png" /></a></p>
<p align="center"> Figure 14-1 &nbsp; Number of ways to reach the 3rd step </p>
@ -4043,7 +4043,7 @@ dp[i-1], dp[i-2], \dots, dp[2], dp[1]
<div class="arithmatex">\[
dp[i] = dp[i-1] + dp[i-2]
\]</div>
<p>This means that in the stair climbing problem, there is a recursive relationship between the subproblems, <strong>the solution to the original problem can be constructed from the solutions to the subproblems</strong>. The following image shows this recursive relationship.</p>
<p>This means that in the stair climbing problem, there is a recursive relationship between the subproblems, <strong>the solution to the original problem can be constructed from the solutions to the subproblems</strong>. Figure 14-2 shows this recursive relationship.</p>
<p><a class="glightbox" href="../intro_to_dynamic_programming.assets/climbing_stairs_state_transfer.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="Recursive relationship of solution counts" class="animation-figure" src="../intro_to_dynamic_programming.assets/climbing_stairs_state_transfer.png" /></a></p>
<p align="center"> Figure 14-2 &nbsp; Recursive relationship of solution counts </p>
@ -4283,11 +4283,11 @@ dp[i] = dp[i-1] + dp[i-2]
<p><div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20dfs%28i%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E6%90%9C%E7%B4%A2%22%22%22%0A%20%20%20%20%23%20%E5%B7%B2%E7%9F%A5%20dp%5B1%5D%20%E5%92%8C%20dp%5B2%5D%20%EF%BC%8C%E8%BF%94%E5%9B%9E%E4%B9%8B%0A%20%20%20%20if%20i%20%3D%3D%201%20or%20i%20%3D%3D%202%3A%0A%20%20%20%20%20%20%20%20return%20i%0A%20%20%20%20%23%20dp%5Bi%5D%20%3D%20dp%5Bi-1%5D%20%2B%20dp%5Bi-2%5D%0A%20%20%20%20count%20%3D%20dfs%28i%20-%201%29%20%2B%20dfs%28i%20-%202%29%0A%20%20%20%20return%20count%0A%0A%0Adef%20climbing_stairs_dfs%28n%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%88%AC%E6%A5%BC%E6%A2%AF%EF%BC%9A%E6%90%9C%E7%B4%A2%22%22%22%0A%20%20%20%20return%20dfs%28n%29%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%209%0A%0A%20%20%20%20res%20%3D%20climbing_stairs_dfs%28n%29%0A%20%20%20%20print%28f%22%E7%88%AC%20%7Bn%7D%20%E9%98%B6%E6%A5%BC%E6%A2%AF%E5%85%B1%E6%9C%89%20%7Bres%7D%20%E7%A7%8D%E6%96%B9%E6%A1%88%22%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=5&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20dfs%28i%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E6%90%9C%E7%B4%A2%22%22%22%0A%20%20%20%20%23%20%E5%B7%B2%E7%9F%A5%20dp%5B1%5D%20%E5%92%8C%20dp%5B2%5D%20%EF%BC%8C%E8%BF%94%E5%9B%9E%E4%B9%8B%0A%20%20%20%20if%20i%20%3D%3D%201%20or%20i%20%3D%3D%202%3A%0A%20%20%20%20%20%20%20%20return%20i%0A%20%20%20%20%23%20dp%5Bi%5D%20%3D%20dp%5Bi-1%5D%20%2B%20dp%5Bi-2%5D%0A%20%20%20%20count%20%3D%20dfs%28i%20-%201%29%20%2B%20dfs%28i%20-%202%29%0A%20%20%20%20return%20count%0A%0A%0Adef%20climbing_stairs_dfs%28n%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%88%AC%E6%A5%BC%E6%A2%AF%EF%BC%9A%E6%90%9C%E7%B4%A2%22%22%22%0A%20%20%20%20return%20dfs%28n%29%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%209%0A%0A%20%20%20%20res%20%3D%20climbing_stairs_dfs%28n%29%0A%20%20%20%20print%28f%22%E7%88%AC%20%7Bn%7D%20%E9%98%B6%E6%A5%BC%E6%A2%AF%E5%85%B1%E6%9C%89%20%7Bres%7D%20%E7%A7%8D%E6%96%B9%E6%A1%88%22%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=5&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">Full Screen &gt;</a></div></p>
</details>
<p>The following image shows the recursive tree formed by brute force search. For the problem <span class="arithmatex">\(dp[n]\)</span>, the depth of its recursive tree is <span class="arithmatex">\(n\)</span>, with a time complexity of <span class="arithmatex">\(O(2^n)\)</span>. Exponential order represents explosive growth, and entering a long wait if a relatively large <span class="arithmatex">\(n\)</span> is input.</p>
<p>Figure 14-3 shows the recursive tree formed by brute force search. For the problem <span class="arithmatex">\(dp[n]\)</span>, the depth of its recursive tree is <span class="arithmatex">\(n\)</span>, with a time complexity of <span class="arithmatex">\(O(2^n)\)</span>. Exponential order represents explosive growth, and entering a long wait if a relatively large <span class="arithmatex">\(n\)</span> is input.</p>
<p><a class="glightbox" href="../intro_to_dynamic_programming.assets/climbing_stairs_dfs_tree.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="Recursive tree for climbing stairs" class="animation-figure" src="../intro_to_dynamic_programming.assets/climbing_stairs_dfs_tree.png" /></a></p>
<p align="center"> Figure 14-3 &nbsp; Recursive tree for climbing stairs </p>
<p>Observing the above image, <strong>the exponential time complexity is caused by 'overlapping subproblems'</strong>. For example, <span class="arithmatex">\(dp[9]\)</span> is decomposed into <span class="arithmatex">\(dp[8]\)</span> and <span class="arithmatex">\(dp[7]\)</span>, <span class="arithmatex">\(dp[8]\)</span> into <span class="arithmatex">\(dp[7]\)</span> and <span class="arithmatex">\(dp[6]\)</span>, both containing the subproblem <span class="arithmatex">\(dp[7]\)</span>.</p>
<p>Observing Figure 14-3, <strong>the exponential time complexity is caused by 'overlapping subproblems'</strong>. For example, <span class="arithmatex">\(dp[9]\)</span> is decomposed into <span class="arithmatex">\(dp[8]\)</span> and <span class="arithmatex">\(dp[7]\)</span>, <span class="arithmatex">\(dp[8]\)</span> into <span class="arithmatex">\(dp[7]\)</span> and <span class="arithmatex">\(dp[6]\)</span>, both containing the subproblem <span class="arithmatex">\(dp[7]\)</span>.</p>
<p>Thus, subproblems include even smaller overlapping subproblems, endlessly. A vast majority of computational resources are wasted on these overlapping subproblems.</p>
<h2 id="1412-method-2-memoized-search">14.1.2 &nbsp; Method 2: Memoized search<a class="headerlink" href="#1412-method-2-memoized-search" title="Permanent link">&para;</a></h2>
<p>To enhance algorithm efficiency, <strong>we hope that all overlapping subproblems are calculated only once</strong>. For this purpose, we declare an array <code>mem</code> to record the solution of each subproblem, and prune overlapping subproblems during the search process.</p>
@ -4632,7 +4632,7 @@ dp[i] = dp[i-1] + dp[i-2]
<p><div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20dfs%28i%3A%20int,%20mem%3A%20list%5Bint%5D%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E8%AE%B0%E5%BF%86%E5%8C%96%E6%90%9C%E7%B4%A2%22%22%22%0A%20%20%20%20%23%20%E5%B7%B2%E7%9F%A5%20dp%5B1%5D%20%E5%92%8C%20dp%5B2%5D%20%EF%BC%8C%E8%BF%94%E5%9B%9E%E4%B9%8B%0A%20%20%20%20if%20i%20%3D%3D%201%20or%20i%20%3D%3D%202%3A%0A%20%20%20%20%20%20%20%20return%20i%0A%20%20%20%20%23%20%E8%8B%A5%E5%AD%98%E5%9C%A8%E8%AE%B0%E5%BD%95%20dp%5Bi%5D%20%EF%BC%8C%E5%88%99%E7%9B%B4%E6%8E%A5%E8%BF%94%E5%9B%9E%E4%B9%8B%0A%20%20%20%20if%20mem%5Bi%5D%20!%3D%20-1%3A%0A%20%20%20%20%20%20%20%20return%20mem%5Bi%5D%0A%20%20%20%20%23%20dp%5Bi%5D%20%3D%20dp%5Bi-1%5D%20%2B%20dp%5Bi-2%5D%0A%20%20%20%20count%20%3D%20dfs%28i%20-%201,%20mem%29%20%2B%20dfs%28i%20-%202,%20mem%29%0A%20%20%20%20%23%20%E8%AE%B0%E5%BD%95%20dp%5Bi%5D%0A%20%20%20%20mem%5Bi%5D%20%3D%20count%0A%20%20%20%20return%20count%0A%0A%0Adef%20climbing_stairs_dfs_mem%28n%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%88%AC%E6%A5%BC%E6%A2%AF%EF%BC%9A%E8%AE%B0%E5%BF%86%E5%8C%96%E6%90%9C%E7%B4%A2%22%22%22%0A%20%20%20%20%23%20mem%5Bi%5D%20%E8%AE%B0%E5%BD%95%E7%88%AC%E5%88%B0%E7%AC%AC%20i%20%E9%98%B6%E7%9A%84%E6%96%B9%E6%A1%88%E6%80%BB%E6%95%B0%EF%BC%8C-1%20%E4%BB%A3%E8%A1%A8%E6%97%A0%E8%AE%B0%E5%BD%95%0A%20%20%20%20mem%20%3D%20%5B-1%5D%20*%20%28n%20%2B%201%29%0A%20%20%20%20return%20dfs%28n,%20mem%29%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%209%0A%0A%20%20%20%20res%20%3D%20climbing_stairs_dfs_mem%28n%29%0A%20%20%20%20print%28f%22%E7%88%AC%20%7Bn%7D%20%E9%98%B6%E6%A5%BC%E6%A2%AF%E5%85%B1%E6%9C%89%20%7Bres%7D%20%E7%A7%8D%E6%96%B9%E6%A1%88%22%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=5&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20dfs%28i%3A%20int,%20mem%3A%20list%5Bint%5D%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E8%AE%B0%E5%BF%86%E5%8C%96%E6%90%9C%E7%B4%A2%22%22%22%0A%20%20%20%20%23%20%E5%B7%B2%E7%9F%A5%20dp%5B1%5D%20%E5%92%8C%20dp%5B2%5D%20%EF%BC%8C%E8%BF%94%E5%9B%9E%E4%B9%8B%0A%20%20%20%20if%20i%20%3D%3D%201%20or%20i%20%3D%3D%202%3A%0A%20%20%20%20%20%20%20%20return%20i%0A%20%20%20%20%23%20%E8%8B%A5%E5%AD%98%E5%9C%A8%E8%AE%B0%E5%BD%95%20dp%5Bi%5D%20%EF%BC%8C%E5%88%99%E7%9B%B4%E6%8E%A5%E8%BF%94%E5%9B%9E%E4%B9%8B%0A%20%20%20%20if%20mem%5Bi%5D%20!%3D%20-1%3A%0A%20%20%20%20%20%20%20%20return%20mem%5Bi%5D%0A%20%20%20%20%23%20dp%5Bi%5D%20%3D%20dp%5Bi-1%5D%20%2B%20dp%5Bi-2%5D%0A%20%20%20%20count%20%3D%20dfs%28i%20-%201,%20mem%29%20%2B%20dfs%28i%20-%202,%20mem%29%0A%20%20%20%20%23%20%E8%AE%B0%E5%BD%95%20dp%5Bi%5D%0A%20%20%20%20mem%5Bi%5D%20%3D%20count%0A%20%20%20%20return%20count%0A%0A%0Adef%20climbing_stairs_dfs_mem%28n%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%88%AC%E6%A5%BC%E6%A2%AF%EF%BC%9A%E8%AE%B0%E5%BF%86%E5%8C%96%E6%90%9C%E7%B4%A2%22%22%22%0A%20%20%20%20%23%20mem%5Bi%5D%20%E8%AE%B0%E5%BD%95%E7%88%AC%E5%88%B0%E7%AC%AC%20i%20%E9%98%B6%E7%9A%84%E6%96%B9%E6%A1%88%E6%80%BB%E6%95%B0%EF%BC%8C-1%20%E4%BB%A3%E8%A1%A8%E6%97%A0%E8%AE%B0%E5%BD%95%0A%20%20%20%20mem%20%3D%20%5B-1%5D%20*%20%28n%20%2B%201%29%0A%20%20%20%20return%20dfs%28n,%20mem%29%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%209%0A%0A%20%20%20%20res%20%3D%20climbing_stairs_dfs_mem%28n%29%0A%20%20%20%20print%28f%22%E7%88%AC%20%7Bn%7D%20%E9%98%B6%E6%A5%BC%E6%A2%AF%E5%85%B1%E6%9C%89%20%7Bres%7D%20%E7%A7%8D%E6%96%B9%E6%A1%88%22%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=5&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">Full Screen &gt;</a></div></p>
</details>
<p>Observe the following image, <strong>after memoization, all overlapping subproblems need to be calculated only once, optimizing the time complexity to <span class="arithmatex">\(O(n)\)</span></strong>, which is a significant leap.</p>
<p>Observe Figure 14-4, <strong>after memoization, all overlapping subproblems need to be calculated only once, optimizing the time complexity to <span class="arithmatex">\(O(n)\)</span></strong>, which is a significant leap.</p>
<p><a class="glightbox" href="../intro_to_dynamic_programming.assets/climbing_stairs_dfs_memo_tree.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="Recursive tree with memoized search" class="animation-figure" src="../intro_to_dynamic_programming.assets/climbing_stairs_dfs_memo_tree.png" /></a></p>
<p align="center"> Figure 14-4 &nbsp; Recursive tree with memoized search </p>
@ -4888,7 +4888,7 @@ dp[i] = dp[i-1] + dp[i-2]
<p><div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20climbing_stairs_dp%28n%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%88%AC%E6%A5%BC%E6%A2%AF%EF%BC%9A%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%22%22%22%0A%20%20%20%20if%20n%20%3D%3D%201%20or%20n%20%3D%3D%202%3A%0A%20%20%20%20%20%20%20%20return%20n%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%20dp%20%E8%A1%A8%EF%BC%8C%E7%94%A8%E4%BA%8E%E5%AD%98%E5%82%A8%E5%AD%90%E9%97%AE%E9%A2%98%E7%9A%84%E8%A7%A3%0A%20%20%20%20dp%20%3D%20%5B0%5D%20*%20%28n%20%2B%201%29%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E7%8A%B6%E6%80%81%EF%BC%9A%E9%A2%84%E8%AE%BE%E6%9C%80%E5%B0%8F%E5%AD%90%E9%97%AE%E9%A2%98%E7%9A%84%E8%A7%A3%0A%20%20%20%20dp%5B1%5D,%20dp%5B2%5D%20%3D%201,%202%0A%20%20%20%20%23%20%E7%8A%B6%E6%80%81%E8%BD%AC%E7%A7%BB%EF%BC%9A%E4%BB%8E%E8%BE%83%E5%B0%8F%E5%AD%90%E9%97%AE%E9%A2%98%E9%80%90%E6%AD%A5%E6%B1%82%E8%A7%A3%E8%BE%83%E5%A4%A7%E5%AD%90%E9%97%AE%E9%A2%98%0A%20%20%20%20for%20i%20in%20range%283,%20n%20%2B%201%29%3A%0A%20%20%20%20%20%20%20%20dp%5Bi%5D%20%3D%20dp%5Bi%20-%201%5D%20%2B%20dp%5Bi%20-%202%5D%0A%20%20%20%20return%20dp%5Bn%5D%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%209%0A%0A%20%20%20%20res%20%3D%20climbing_stairs_dp%28n%29%0A%20%20%20%20print%28f%22%E7%88%AC%20%7Bn%7D%20%E9%98%B6%E6%A5%BC%E6%A2%AF%E5%85%B1%E6%9C%89%20%7Bres%7D%20%E7%A7%8D%E6%96%B9%E6%A1%88%22%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=4&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20climbing_stairs_dp%28n%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%88%AC%E6%A5%BC%E6%A2%AF%EF%BC%9A%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%22%22%22%0A%20%20%20%20if%20n%20%3D%3D%201%20or%20n%20%3D%3D%202%3A%0A%20%20%20%20%20%20%20%20return%20n%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%20dp%20%E8%A1%A8%EF%BC%8C%E7%94%A8%E4%BA%8E%E5%AD%98%E5%82%A8%E5%AD%90%E9%97%AE%E9%A2%98%E7%9A%84%E8%A7%A3%0A%20%20%20%20dp%20%3D%20%5B0%5D%20*%20%28n%20%2B%201%29%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E7%8A%B6%E6%80%81%EF%BC%9A%E9%A2%84%E8%AE%BE%E6%9C%80%E5%B0%8F%E5%AD%90%E9%97%AE%E9%A2%98%E7%9A%84%E8%A7%A3%0A%20%20%20%20dp%5B1%5D,%20dp%5B2%5D%20%3D%201,%202%0A%20%20%20%20%23%20%E7%8A%B6%E6%80%81%E8%BD%AC%E7%A7%BB%EF%BC%9A%E4%BB%8E%E8%BE%83%E5%B0%8F%E5%AD%90%E9%97%AE%E9%A2%98%E9%80%90%E6%AD%A5%E6%B1%82%E8%A7%A3%E8%BE%83%E5%A4%A7%E5%AD%90%E9%97%AE%E9%A2%98%0A%20%20%20%20for%20i%20in%20range%283,%20n%20%2B%201%29%3A%0A%20%20%20%20%20%20%20%20dp%5Bi%5D%20%3D%20dp%5Bi%20-%201%5D%20%2B%20dp%5Bi%20-%202%5D%0A%20%20%20%20return%20dp%5Bn%5D%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%209%0A%0A%20%20%20%20res%20%3D%20climbing_stairs_dp%28n%29%0A%20%20%20%20print%28f%22%E7%88%AC%20%7Bn%7D%20%E9%98%B6%E6%A5%BC%E6%A2%AF%E5%85%B1%E6%9C%89%20%7Bres%7D%20%E7%A7%8D%E6%96%B9%E6%A1%88%22%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=4&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">Full Screen &gt;</a></div></p>
</details>
<p>The image below simulates the execution process of the above code.</p>
<p>Figure 14-5 simulates the execution process of the above code.</p>
<p><a class="glightbox" href="../intro_to_dynamic_programming.assets/climbing_stairs_dp.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="Dynamic programming process for climbing stairs" class="animation-figure" src="../intro_to_dynamic_programming.assets/climbing_stairs_dp.png" /></a></p>
<p align="center"> Figure 14-5 &nbsp; Dynamic programming process for climbing stairs </p>