This commit is contained in:
krahets
2023-12-02 06:24:11 +08:00
parent 5783c402bf
commit d20d8b3ee1
107 changed files with 1685 additions and 1745 deletions

View File

@ -3518,7 +3518,7 @@
<!-- Page content -->
<h1 id="71">7.1 &nbsp; 二叉树<a class="headerlink" href="#71" title="Permanent link">&para;</a></h1>
<p>「二叉树 binary tree」是一种非线性数据结构代表祖先后代之间的派生关系,体现“一分为二”的分治逻辑。与链表类似,二叉树的基本单元是节点,每个节点包含值、左子节点引用右子节点引用。</p>
<p>「二叉树 binary tree」是一种非线性数据结构代表祖先”与“后代之间的派生关系,体现“一分为二”的分治逻辑。与链表类似,二叉树的基本单元是节点,每个节点包含值、左子节点引用右子节点引用。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="1:12"><input checked="checked" id="__tabbed_1_1" name="__tabbed_1" type="radio" /><input id="__tabbed_1_2" name="__tabbed_1" type="radio" /><input id="__tabbed_1_3" name="__tabbed_1" type="radio" /><input id="__tabbed_1_4" name="__tabbed_1" type="radio" /><input id="__tabbed_1_5" name="__tabbed_1" type="radio" /><input id="__tabbed_1_6" name="__tabbed_1" type="radio" /><input id="__tabbed_1_7" name="__tabbed_1" type="radio" /><input id="__tabbed_1_8" name="__tabbed_1" type="radio" /><input id="__tabbed_1_9" name="__tabbed_1" type="radio" /><input id="__tabbed_1_10" name="__tabbed_1" type="radio" /><input id="__tabbed_1_11" name="__tabbed_1" type="radio" /><input id="__tabbed_1_12" name="__tabbed_1" type="radio" /><div class="tabbed-labels"><label for="__tabbed_1_1">Python</label><label for="__tabbed_1_2">C++</label><label for="__tabbed_1_3">Java</label><label for="__tabbed_1_4">C#</label><label for="__tabbed_1_5">Go</label><label for="__tabbed_1_6">Swift</label><label for="__tabbed_1_7">JS</label><label for="__tabbed_1_8">TS</label><label for="__tabbed_1_9">Dart</label><label for="__tabbed_1_10">Rust</label><label for="__tabbed_1_11">C</label><label for="__tabbed_1_12">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
@ -3701,7 +3701,7 @@
<div class="admonition tip">
<p class="admonition-title">Tip</p>
<p>请注意,我们通常将“高度”和“深度”定义为“走过边的数量”,但有些题目或教材可能会将其定义为“走过节点的数量”。在这种情况下,高度和深度都需要加 1 。</p>
<p>请注意,我们通常将“高度”和“深度”定义为“经过的边的数量”,但有些题目或教材可能会将其定义为“经过的节点的数量”。在这种情况下,高度和深度都需要加 1 。</p>
</div>
<h2 id="712">7.1.2 &nbsp; 二叉树基本操作<a class="headerlink" href="#712" title="Permanent link">&para;</a></h2>
<h3 id="1">1. &nbsp; 初始化二叉树<a class="headerlink" href="#1" title="Permanent link">&para;</a></h3>
@ -3716,7 +3716,7 @@
<a id="__codelineno-12-5" name="__codelineno-12-5" href="#__codelineno-12-5"></a><span class="n">n3</span> <span class="o">=</span> <span class="n">TreeNode</span><span class="p">(</span><span class="n">val</span><span class="o">=</span><span class="mi">3</span><span class="p">)</span>
<a id="__codelineno-12-6" name="__codelineno-12-6" href="#__codelineno-12-6"></a><span class="n">n4</span> <span class="o">=</span> <span class="n">TreeNode</span><span class="p">(</span><span class="n">val</span><span class="o">=</span><span class="mi">4</span><span class="p">)</span>
<a id="__codelineno-12-7" name="__codelineno-12-7" href="#__codelineno-12-7"></a><span class="n">n5</span> <span class="o">=</span> <span class="n">TreeNode</span><span class="p">(</span><span class="n">val</span><span class="o">=</span><span class="mi">5</span><span class="p">)</span>
<a id="__codelineno-12-8" name="__codelineno-12-8" href="#__codelineno-12-8"></a><span class="c1"># 构建引用指向(即指针)</span>
<a id="__codelineno-12-8" name="__codelineno-12-8" href="#__codelineno-12-8"></a><span class="c1"># 构建节点之间的引用(指针)</span>
<a id="__codelineno-12-9" name="__codelineno-12-9" href="#__codelineno-12-9"></a><span class="n">n1</span><span class="o">.</span><span class="n">left</span> <span class="o">=</span> <span class="n">n2</span>
<a id="__codelineno-12-10" name="__codelineno-12-10" href="#__codelineno-12-10"></a><span class="n">n1</span><span class="o">.</span><span class="n">right</span> <span class="o">=</span> <span class="n">n3</span>
<a id="__codelineno-12-11" name="__codelineno-12-11" href="#__codelineno-12-11"></a><span class="n">n2</span><span class="o">.</span><span class="n">left</span> <span class="o">=</span> <span class="n">n4</span>
@ -3731,7 +3731,7 @@
<a id="__codelineno-13-5" name="__codelineno-13-5" href="#__codelineno-13-5"></a><span class="n">TreeNode</span><span class="o">*</span><span class="w"> </span><span class="n">n3</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">TreeNode</span><span class="p">(</span><span class="mi">3</span><span class="p">);</span>
<a id="__codelineno-13-6" name="__codelineno-13-6" href="#__codelineno-13-6"></a><span class="n">TreeNode</span><span class="o">*</span><span class="w"> </span><span class="n">n4</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">TreeNode</span><span class="p">(</span><span class="mi">4</span><span class="p">);</span>
<a id="__codelineno-13-7" name="__codelineno-13-7" href="#__codelineno-13-7"></a><span class="n">TreeNode</span><span class="o">*</span><span class="w"> </span><span class="n">n5</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">TreeNode</span><span class="p">(</span><span class="mi">5</span><span class="p">);</span>
<a id="__codelineno-13-8" name="__codelineno-13-8" href="#__codelineno-13-8"></a><span class="c1">// 构建引用指向(即指针)</span>
<a id="__codelineno-13-8" name="__codelineno-13-8" href="#__codelineno-13-8"></a><span class="c1">// 构建节点之间的引用(指针)</span>
<a id="__codelineno-13-9" name="__codelineno-13-9" href="#__codelineno-13-9"></a><span class="n">n1</span><span class="o">-&gt;</span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n2</span><span class="p">;</span>
<a id="__codelineno-13-10" name="__codelineno-13-10" href="#__codelineno-13-10"></a><span class="n">n1</span><span class="o">-&gt;</span><span class="n">right</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n3</span><span class="p">;</span>
<a id="__codelineno-13-11" name="__codelineno-13-11" href="#__codelineno-13-11"></a><span class="n">n2</span><span class="o">-&gt;</span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n4</span><span class="p">;</span>
@ -3745,7 +3745,7 @@
<a id="__codelineno-14-4" name="__codelineno-14-4" href="#__codelineno-14-4"></a><span class="n">TreeNode</span><span class="w"> </span><span class="n">n3</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">TreeNode</span><span class="p">(</span><span class="mi">3</span><span class="p">);</span>
<a id="__codelineno-14-5" name="__codelineno-14-5" href="#__codelineno-14-5"></a><span class="n">TreeNode</span><span class="w"> </span><span class="n">n4</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">TreeNode</span><span class="p">(</span><span class="mi">4</span><span class="p">);</span>
<a id="__codelineno-14-6" name="__codelineno-14-6" href="#__codelineno-14-6"></a><span class="n">TreeNode</span><span class="w"> </span><span class="n">n5</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">TreeNode</span><span class="p">(</span><span class="mi">5</span><span class="p">);</span>
<a id="__codelineno-14-7" name="__codelineno-14-7" href="#__codelineno-14-7"></a><span class="c1">// 构建引用指向(即指针)</span>
<a id="__codelineno-14-7" name="__codelineno-14-7" href="#__codelineno-14-7"></a><span class="c1">// 构建节点之间的引用(指针)</span>
<a id="__codelineno-14-8" name="__codelineno-14-8" href="#__codelineno-14-8"></a><span class="n">n1</span><span class="p">.</span><span class="na">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n2</span><span class="p">;</span>
<a id="__codelineno-14-9" name="__codelineno-14-9" href="#__codelineno-14-9"></a><span class="n">n1</span><span class="p">.</span><span class="na">right</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n3</span><span class="p">;</span>
<a id="__codelineno-14-10" name="__codelineno-14-10" href="#__codelineno-14-10"></a><span class="n">n2</span><span class="p">.</span><span class="na">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n4</span><span class="p">;</span>
@ -3760,7 +3760,7 @@
<a id="__codelineno-15-5" name="__codelineno-15-5" href="#__codelineno-15-5"></a><span class="n">TreeNode</span><span class="w"> </span><span class="n">n3</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="p">(</span><span class="m">3</span><span class="p">);</span>
<a id="__codelineno-15-6" name="__codelineno-15-6" href="#__codelineno-15-6"></a><span class="n">TreeNode</span><span class="w"> </span><span class="n">n4</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="p">(</span><span class="m">4</span><span class="p">);</span>
<a id="__codelineno-15-7" name="__codelineno-15-7" href="#__codelineno-15-7"></a><span class="n">TreeNode</span><span class="w"> </span><span class="n">n5</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="p">(</span><span class="m">5</span><span class="p">);</span>
<a id="__codelineno-15-8" name="__codelineno-15-8" href="#__codelineno-15-8"></a><span class="c1">// 构建引用指向(即指针)</span>
<a id="__codelineno-15-8" name="__codelineno-15-8" href="#__codelineno-15-8"></a><span class="c1">// 构建节点之间的引用(指针)</span>
<a id="__codelineno-15-9" name="__codelineno-15-9" href="#__codelineno-15-9"></a><span class="n">n1</span><span class="p">.</span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n2</span><span class="p">;</span>
<a id="__codelineno-15-10" name="__codelineno-15-10" href="#__codelineno-15-10"></a><span class="n">n1</span><span class="p">.</span><span class="n">right</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n3</span><span class="p">;</span>
<a id="__codelineno-15-11" name="__codelineno-15-11" href="#__codelineno-15-11"></a><span class="n">n2</span><span class="p">.</span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n4</span><span class="p">;</span>
@ -3775,7 +3775,7 @@
<a id="__codelineno-16-5" name="__codelineno-16-5" href="#__codelineno-16-5"></a><span class="nx">n3</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">NewTreeNode</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span>
<a id="__codelineno-16-6" name="__codelineno-16-6" href="#__codelineno-16-6"></a><span class="nx">n4</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">NewTreeNode</span><span class="p">(</span><span class="mi">4</span><span class="p">)</span>
<a id="__codelineno-16-7" name="__codelineno-16-7" href="#__codelineno-16-7"></a><span class="nx">n5</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">NewTreeNode</span><span class="p">(</span><span class="mi">5</span><span class="p">)</span>
<a id="__codelineno-16-8" name="__codelineno-16-8" href="#__codelineno-16-8"></a><span class="c1">// 构建引用指向(即指针)</span>
<a id="__codelineno-16-8" name="__codelineno-16-8" href="#__codelineno-16-8"></a><span class="c1">// 构建节点之间的引用(指针)</span>
<a id="__codelineno-16-9" name="__codelineno-16-9" href="#__codelineno-16-9"></a><span class="nx">n1</span><span class="p">.</span><span class="nx">Left</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">n2</span>
<a id="__codelineno-16-10" name="__codelineno-16-10" href="#__codelineno-16-10"></a><span class="nx">n1</span><span class="p">.</span><span class="nx">Right</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">n3</span>
<a id="__codelineno-16-11" name="__codelineno-16-11" href="#__codelineno-16-11"></a><span class="nx">n2</span><span class="p">.</span><span class="nx">Left</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">n4</span>
@ -3789,7 +3789,7 @@
<a id="__codelineno-17-4" name="__codelineno-17-4" href="#__codelineno-17-4"></a><span class="kd">let</span> <span class="nv">n3</span> <span class="p">=</span> <span class="n">TreeNode</span><span class="p">(</span><span class="n">x</span><span class="p">:</span> <span class="mi">3</span><span class="p">)</span>
<a id="__codelineno-17-5" name="__codelineno-17-5" href="#__codelineno-17-5"></a><span class="kd">let</span> <span class="nv">n4</span> <span class="p">=</span> <span class="n">TreeNode</span><span class="p">(</span><span class="n">x</span><span class="p">:</span> <span class="mi">4</span><span class="p">)</span>
<a id="__codelineno-17-6" name="__codelineno-17-6" href="#__codelineno-17-6"></a><span class="kd">let</span> <span class="nv">n5</span> <span class="p">=</span> <span class="n">TreeNode</span><span class="p">(</span><span class="n">x</span><span class="p">:</span> <span class="mi">5</span><span class="p">)</span>
<a id="__codelineno-17-7" name="__codelineno-17-7" href="#__codelineno-17-7"></a><span class="c1">// 构建引用指向(即指针)</span>
<a id="__codelineno-17-7" name="__codelineno-17-7" href="#__codelineno-17-7"></a><span class="c1">// 构建节点之间的引用(指针)</span>
<a id="__codelineno-17-8" name="__codelineno-17-8" href="#__codelineno-17-8"></a><span class="n">n1</span><span class="p">.</span><span class="kr">left</span> <span class="p">=</span> <span class="n">n2</span>
<a id="__codelineno-17-9" name="__codelineno-17-9" href="#__codelineno-17-9"></a><span class="n">n1</span><span class="p">.</span><span class="kr">right</span> <span class="p">=</span> <span class="n">n3</span>
<a id="__codelineno-17-10" name="__codelineno-17-10" href="#__codelineno-17-10"></a><span class="n">n2</span><span class="p">.</span><span class="kr">left</span> <span class="p">=</span> <span class="n">n4</span>
@ -3804,7 +3804,7 @@
<a id="__codelineno-18-5" name="__codelineno-18-5" href="#__codelineno-18-5"></a><span class="w"> </span><span class="nx">n3</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="ow">new</span><span class="w"> </span><span class="nx">TreeNode</span><span class="p">(</span><span class="mf">3</span><span class="p">),</span>
<a id="__codelineno-18-6" name="__codelineno-18-6" href="#__codelineno-18-6"></a><span class="w"> </span><span class="nx">n4</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="ow">new</span><span class="w"> </span><span class="nx">TreeNode</span><span class="p">(</span><span class="mf">4</span><span class="p">),</span>
<a id="__codelineno-18-7" name="__codelineno-18-7" href="#__codelineno-18-7"></a><span class="w"> </span><span class="nx">n5</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="ow">new</span><span class="w"> </span><span class="nx">TreeNode</span><span class="p">(</span><span class="mf">5</span><span class="p">);</span>
<a id="__codelineno-18-8" name="__codelineno-18-8" href="#__codelineno-18-8"></a><span class="c1">// 构建引用指向(即指针)</span>
<a id="__codelineno-18-8" name="__codelineno-18-8" href="#__codelineno-18-8"></a><span class="c1">// 构建节点之间的引用(指针)</span>
<a id="__codelineno-18-9" name="__codelineno-18-9" href="#__codelineno-18-9"></a><span class="nx">n1</span><span class="p">.</span><span class="nx">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">n2</span><span class="p">;</span>
<a id="__codelineno-18-10" name="__codelineno-18-10" href="#__codelineno-18-10"></a><span class="nx">n1</span><span class="p">.</span><span class="nx">right</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">n3</span><span class="p">;</span>
<a id="__codelineno-18-11" name="__codelineno-18-11" href="#__codelineno-18-11"></a><span class="nx">n2</span><span class="p">.</span><span class="nx">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">n4</span><span class="p">;</span>
@ -3819,7 +3819,7 @@
<a id="__codelineno-19-5" name="__codelineno-19-5" href="#__codelineno-19-5"></a><span class="w"> </span><span class="nx">n3</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="ow">new</span><span class="w"> </span><span class="nx">TreeNode</span><span class="p">(</span><span class="mf">3</span><span class="p">),</span>
<a id="__codelineno-19-6" name="__codelineno-19-6" href="#__codelineno-19-6"></a><span class="w"> </span><span class="nx">n4</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="ow">new</span><span class="w"> </span><span class="nx">TreeNode</span><span class="p">(</span><span class="mf">4</span><span class="p">),</span>
<a id="__codelineno-19-7" name="__codelineno-19-7" href="#__codelineno-19-7"></a><span class="w"> </span><span class="nx">n5</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="ow">new</span><span class="w"> </span><span class="nx">TreeNode</span><span class="p">(</span><span class="mf">5</span><span class="p">);</span>
<a id="__codelineno-19-8" name="__codelineno-19-8" href="#__codelineno-19-8"></a><span class="c1">// 构建引用指向(即指针)</span>
<a id="__codelineno-19-8" name="__codelineno-19-8" href="#__codelineno-19-8"></a><span class="c1">// 构建节点之间的引用(指针)</span>
<a id="__codelineno-19-9" name="__codelineno-19-9" href="#__codelineno-19-9"></a><span class="nx">n1</span><span class="p">.</span><span class="nx">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">n2</span><span class="p">;</span>
<a id="__codelineno-19-10" name="__codelineno-19-10" href="#__codelineno-19-10"></a><span class="nx">n1</span><span class="p">.</span><span class="nx">right</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">n3</span><span class="p">;</span>
<a id="__codelineno-19-11" name="__codelineno-19-11" href="#__codelineno-19-11"></a><span class="nx">n2</span><span class="p">.</span><span class="nx">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">n4</span><span class="p">;</span>
@ -3834,7 +3834,7 @@
<a id="__codelineno-20-5" name="__codelineno-20-5" href="#__codelineno-20-5"></a><span class="n">TreeNode</span><span class="w"> </span><span class="n">n3</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">TreeNode</span><span class="p">(</span><span class="m">3</span><span class="p">);</span>
<a id="__codelineno-20-6" name="__codelineno-20-6" href="#__codelineno-20-6"></a><span class="n">TreeNode</span><span class="w"> </span><span class="n">n4</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">TreeNode</span><span class="p">(</span><span class="m">4</span><span class="p">);</span>
<a id="__codelineno-20-7" name="__codelineno-20-7" href="#__codelineno-20-7"></a><span class="n">TreeNode</span><span class="w"> </span><span class="n">n5</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">TreeNode</span><span class="p">(</span><span class="m">5</span><span class="p">);</span>
<a id="__codelineno-20-8" name="__codelineno-20-8" href="#__codelineno-20-8"></a><span class="c1">// 构建引用指向(即指针)</span>
<a id="__codelineno-20-8" name="__codelineno-20-8" href="#__codelineno-20-8"></a><span class="c1">// 构建节点之间的引用(指针)</span>
<a id="__codelineno-20-9" name="__codelineno-20-9" href="#__codelineno-20-9"></a><span class="n">n1</span><span class="p">.</span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n2</span><span class="p">;</span>
<a id="__codelineno-20-10" name="__codelineno-20-10" href="#__codelineno-20-10"></a><span class="n">n1</span><span class="p">.</span><span class="n">right</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n3</span><span class="p">;</span>
<a id="__codelineno-20-11" name="__codelineno-20-11" href="#__codelineno-20-11"></a><span class="n">n2</span><span class="p">.</span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n4</span><span class="p">;</span>
@ -3848,7 +3848,7 @@
<a id="__codelineno-21-4" name="__codelineno-21-4" href="#__codelineno-21-4"></a><span class="kd">let</span><span class="w"> </span><span class="n">n3</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">TreeNode</span>::<span class="n">new</span><span class="p">(</span><span class="mi">3</span><span class="p">);</span>
<a id="__codelineno-21-5" name="__codelineno-21-5" href="#__codelineno-21-5"></a><span class="kd">let</span><span class="w"> </span><span class="n">n4</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">TreeNode</span>::<span class="n">new</span><span class="p">(</span><span class="mi">4</span><span class="p">);</span>
<a id="__codelineno-21-6" name="__codelineno-21-6" href="#__codelineno-21-6"></a><span class="kd">let</span><span class="w"> </span><span class="n">n5</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">TreeNode</span>::<span class="n">new</span><span class="p">(</span><span class="mi">5</span><span class="p">);</span>
<a id="__codelineno-21-7" name="__codelineno-21-7" href="#__codelineno-21-7"></a><span class="c1">// 构建引用指向(即指针)</span>
<a id="__codelineno-21-7" name="__codelineno-21-7" href="#__codelineno-21-7"></a><span class="c1">// 构建节点之间的引用(指针)</span>
<a id="__codelineno-21-8" name="__codelineno-21-8" href="#__codelineno-21-8"></a><span class="n">n1</span><span class="p">.</span><span class="n">borrow_mut</span><span class="p">().</span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Some</span><span class="p">(</span><span class="n">n2</span><span class="p">.</span><span class="n">clone</span><span class="p">());</span>
<a id="__codelineno-21-9" name="__codelineno-21-9" href="#__codelineno-21-9"></a><span class="n">n1</span><span class="p">.</span><span class="n">borrow_mut</span><span class="p">().</span><span class="n">right</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Some</span><span class="p">(</span><span class="n">n3</span><span class="p">);</span>
<a id="__codelineno-21-10" name="__codelineno-21-10" href="#__codelineno-21-10"></a><span class="n">n2</span><span class="p">.</span><span class="n">borrow_mut</span><span class="p">().</span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Some</span><span class="p">(</span><span class="n">n4</span><span class="p">);</span>
@ -3863,7 +3863,7 @@
<a id="__codelineno-22-5" name="__codelineno-22-5" href="#__codelineno-22-5"></a><span class="n">TreeNode</span><span class="w"> </span><span class="o">*</span><span class="n">n3</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">newTreeNode</span><span class="p">(</span><span class="mi">3</span><span class="p">);</span>
<a id="__codelineno-22-6" name="__codelineno-22-6" href="#__codelineno-22-6"></a><span class="n">TreeNode</span><span class="w"> </span><span class="o">*</span><span class="n">n4</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">newTreeNode</span><span class="p">(</span><span class="mi">4</span><span class="p">);</span>
<a id="__codelineno-22-7" name="__codelineno-22-7" href="#__codelineno-22-7"></a><span class="n">TreeNode</span><span class="w"> </span><span class="o">*</span><span class="n">n5</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">newTreeNode</span><span class="p">(</span><span class="mi">5</span><span class="p">);</span>
<a id="__codelineno-22-8" name="__codelineno-22-8" href="#__codelineno-22-8"></a><span class="c1">// 构建引用指向(即指针)</span>
<a id="__codelineno-22-8" name="__codelineno-22-8" href="#__codelineno-22-8"></a><span class="c1">// 构建节点之间的引用(指针)</span>
<a id="__codelineno-22-9" name="__codelineno-22-9" href="#__codelineno-22-9"></a><span class="n">n1</span><span class="o">-&gt;</span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n2</span><span class="p">;</span>
<a id="__codelineno-22-10" name="__codelineno-22-10" href="#__codelineno-22-10"></a><span class="n">n1</span><span class="o">-&gt;</span><span class="n">right</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n3</span><span class="p">;</span>
<a id="__codelineno-22-11" name="__codelineno-22-11" href="#__codelineno-22-11"></a><span class="n">n2</span><span class="o">-&gt;</span><span class="n">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="n">n4</span><span class="p">;</span>
@ -3998,11 +3998,11 @@
</div>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>需要注意的是,插入节点可能会改变二叉树的原有逻辑结构,而删除节点通常意味着删除该节点及其所有子树。因此,在二叉树中,插入与删除操作通常是由一套操作配合完成的,以实现有实际意义的操作。</p>
<p>需要注意的是,插入节点可能会改变二叉树的原有逻辑结构,而删除节点通常意味着删除该节点及其所有子树。因此,在二叉树中,插入与删除通常是由一套操作配合完成的,以实现有实际意义的操作。</p>
</div>
<h2 id="713">7.1.3 &nbsp; 常见二叉树类型<a class="headerlink" href="#713" title="Permanent link">&para;</a></h2>
<h3 id="1_1">1. &nbsp; 完美二叉树<a class="headerlink" href="#1_1" title="Permanent link">&para;</a></h3>
<p>「完美二叉树 perfect binary tree」所有层的节点都被完全填满。在完美二叉树中叶节点的度为 <span class="arithmatex">\(0\)</span> ,其余所有节点的度都为 <span class="arithmatex">\(2\)</span> ;若树高度为 <span class="arithmatex">\(h\)</span> ,则节点总数为 <span class="arithmatex">\(2^{h+1} - 1\)</span> ,呈现标准的指数级关系,反映了自然界中常见的细胞分裂现象。</p>
<p>如图 7-4 所示,「完美二叉树 perfect binary tree」所有层的节点都被完全填满。在完美二叉树中叶节点的度为 <span class="arithmatex">\(0\)</span> ,其余所有节点的度都为 <span class="arithmatex">\(2\)</span> ;若树高度为 <span class="arithmatex">\(h\)</span> ,则节点总数为 <span class="arithmatex">\(2^{h+1} - 1\)</span> ,呈现标准的指数级关系,反映了自然界中常见的细胞分裂现象。</p>
<div class="admonition tip">
<p class="admonition-title">Tip</p>
<p>请注意,在中文社区中,完美二叉树常被称为「满二叉树」。</p>
@ -4026,16 +4026,16 @@
<p align="center"> 图 7-7 &nbsp; 平衡二叉树 </p>
<h2 id="714">7.1.4 &nbsp; 二叉树的退化<a class="headerlink" href="#714" title="Permanent link">&para;</a></h2>
<p>图 7-8 展示了二叉树的理想与退化状态。当二叉树的每层节点都被填满时,达到“完美二叉树”;而当所有节点都偏向一侧时,二叉树退化为“链表”。</p>
<p>图 7-8 展示了二叉树的理想结构与退化结构。当二叉树的每层节点都被填满时,达到“完美二叉树”;而当所有节点都偏向一侧时,二叉树退化为“链表”。</p>
<ul>
<li>完美二叉树是理想情况,可以充分发挥二叉树“分治”的优势。</li>
<li>链表则是另一个极端,各项操作都变为线性操作,时间复杂度退化至 <span class="arithmatex">\(O(n)\)</span></li>
</ul>
<p><a class="glightbox" href="../binary_tree.assets/binary_tree_best_worst_cases.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="二叉树的最佳与最差结构" class="animation-figure" src="../binary_tree.assets/binary_tree_best_worst_cases.png" /></a></p>
<p align="center"> 图 7-8 &nbsp; 二叉树的最佳与最差结构 </p>
<p><a class="glightbox" href="../binary_tree.assets/binary_tree_best_worst_cases.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="二叉树的最佳结构与最差结构" class="animation-figure" src="../binary_tree.assets/binary_tree_best_worst_cases.png" /></a></p>
<p align="center"> 图 7-8 &nbsp; 二叉树的最佳结构与最差结构 </p>
<p>如表 7-1 所示,在最佳和最差结构下,二叉树的叶节点数量、节点总数、高度等达到极大或极小值。</p>
<p align="center"> 表 7-1 &nbsp; 二叉树的最佳与最差情况 </p>
<p>如表 7-1 所示,在最佳结构和最差结构下,二叉树的叶节点数量、节点总数、高度等达到极大或极小值。</p>
<p align="center"> 表 7-1 &nbsp; 二叉树的最佳结构与最差结构 </p>
<div class="center-table">
<table>
@ -4053,17 +4053,17 @@
<td><span class="arithmatex">\(1\)</span></td>
</tr>
<tr>
<td>高度 <span class="arithmatex">\(h\)</span> 树的叶节点数量</td>
<td>高度 <span class="arithmatex">\(h\)</span> 树的叶节点数量</td>
<td><span class="arithmatex">\(2^h\)</span></td>
<td><span class="arithmatex">\(1\)</span></td>
</tr>
<tr>
<td>高度 <span class="arithmatex">\(h\)</span> 树的节点总数</td>
<td>高度 <span class="arithmatex">\(h\)</span> 树的节点总数</td>
<td><span class="arithmatex">\(2^{h+1} - 1\)</span></td>
<td><span class="arithmatex">\(h + 1\)</span></td>
</tr>
<tr>
<td>节点总数 <span class="arithmatex">\(n\)</span> 树的高度</td>
<td>节点总数 <span class="arithmatex">\(n\)</span> 树的高度</td>
<td><span class="arithmatex">\(\log_2 (n+1) - 1\)</span></td>
<td><span class="arithmatex">\(n - 1\)</span></td>
</tr>