This commit is contained in:
krahets
2023-12-02 06:24:11 +08:00
parent 5783c402bf
commit d20d8b3ee1
107 changed files with 1685 additions and 1745 deletions

View File

@ -3436,8 +3436,8 @@
<!-- Page content -->
<h1 id="52">5.2 &nbsp; 队列<a class="headerlink" href="#52" title="Permanent link">&para;</a></h1>
<p>「队列 queue」是一种遵循先入先出规则的线性数据结构。顾名思义队列模拟了排队现象即新来的人不断加入队列尾部,而位于队列头部的人逐个离开。</p>
<p>如图 5-4 所示,我们将队列头部称为“队首”,尾部称为“队尾”,将把元素加入队尾的操作称为“入队”,删除队首元素的操作称为“出队”。</p>
<p>「队列 queue」是一种遵循先入先出规则的线性数据结构。顾名思义队列模拟了排队现象即新来的人不断加入队列尾部而位于队列头部的人逐个离开。</p>
<p>如图 5-4 所示,我们将队列头部称为“队首”,尾部称为“队尾”,将把元素加入队尾的操作称为“入队”,删除队首元素的操作称为“出队”。</p>
<p><a class="glightbox" href="../queue.assets/queue_operations.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="队列的先入先出规则" class="animation-figure" src="../queue.assets/queue_operations.png" /></a></p>
<p align="center"> 图 5-4 &nbsp; 队列的先入先出规则 </p>
@ -3473,33 +3473,35 @@
</tbody>
</table>
</div>
<p>我们可以直接使用编程语言中现成的队列类</p>
<p>我们可以直接使用编程语言中现成的队列类</p>
<div class="tabbed-set tabbed-alternate" data-tabs="1:12"><input checked="checked" id="__tabbed_1_1" name="__tabbed_1" type="radio" /><input id="__tabbed_1_2" name="__tabbed_1" type="radio" /><input id="__tabbed_1_3" name="__tabbed_1" type="radio" /><input id="__tabbed_1_4" name="__tabbed_1" type="radio" /><input id="__tabbed_1_5" name="__tabbed_1" type="radio" /><input id="__tabbed_1_6" name="__tabbed_1" type="radio" /><input id="__tabbed_1_7" name="__tabbed_1" type="radio" /><input id="__tabbed_1_8" name="__tabbed_1" type="radio" /><input id="__tabbed_1_9" name="__tabbed_1" type="radio" /><input id="__tabbed_1_10" name="__tabbed_1" type="radio" /><input id="__tabbed_1_11" name="__tabbed_1" type="radio" /><input id="__tabbed_1_12" name="__tabbed_1" type="radio" /><div class="tabbed-labels"><label for="__tabbed_1_1">Python</label><label for="__tabbed_1_2">C++</label><label for="__tabbed_1_3">Java</label><label for="__tabbed_1_4">C#</label><label for="__tabbed_1_5">Go</label><label for="__tabbed_1_6">Swift</label><label for="__tabbed_1_7">JS</label><label for="__tabbed_1_8">TS</label><label for="__tabbed_1_9">Dart</label><label for="__tabbed_1_10">Rust</label><label for="__tabbed_1_11">C</label><label for="__tabbed_1_12">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
<div class="highlight"><span class="filename">queue.py</span><pre><span></span><code><a id="__codelineno-0-1" name="__codelineno-0-1" href="#__codelineno-0-1"></a><span class="c1"># 初始化队列</span>
<a id="__codelineno-0-2" name="__codelineno-0-2" href="#__codelineno-0-2"></a><span class="c1"># 在 Python 中,我们一般将双向队列类 deque 看作队列使用</span>
<a id="__codelineno-0-3" name="__codelineno-0-3" href="#__codelineno-0-3"></a><span class="c1"># 虽然 queue.Queue() 是纯正的队列类,但不太好用,因此不建议</span>
<a id="__codelineno-0-4" name="__codelineno-0-4" href="#__codelineno-0-4"></a><span class="n">que</span><span class="p">:</span> <span class="n">deque</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="n">collections</span><span class="o">.</span><span class="n">deque</span><span class="p">()</span>
<a id="__codelineno-0-5" name="__codelineno-0-5" href="#__codelineno-0-5"></a>
<a id="__codelineno-0-6" name="__codelineno-0-6" href="#__codelineno-0-6"></a><span class="c1"># 元素入队</span>
<a id="__codelineno-0-7" name="__codelineno-0-7" href="#__codelineno-0-7"></a><span class="n">que</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-0-8" name="__codelineno-0-8" href="#__codelineno-0-8"></a><span class="n">que</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span>
<a id="__codelineno-0-9" name="__codelineno-0-9" href="#__codelineno-0-9"></a><span class="n">que</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span>
<a id="__codelineno-0-10" name="__codelineno-0-10" href="#__codelineno-0-10"></a><span class="n">que</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">5</span><span class="p">)</span>
<a id="__codelineno-0-11" name="__codelineno-0-11" href="#__codelineno-0-11"></a><span class="n">que</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">4</span><span class="p">)</span>
<a id="__codelineno-0-12" name="__codelineno-0-12" href="#__codelineno-0-12"></a>
<a id="__codelineno-0-13" name="__codelineno-0-13" href="#__codelineno-0-13"></a><span class="c1"># 访问队首元素</span>
<a id="__codelineno-0-14" name="__codelineno-0-14" href="#__codelineno-0-14"></a><span class="n">front</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="n">que</span><span class="p">[</span><span class="mi">0</span><span class="p">];</span>
<a id="__codelineno-0-15" name="__codelineno-0-15" href="#__codelineno-0-15"></a>
<a id="__codelineno-0-16" name="__codelineno-0-16" href="#__codelineno-0-16"></a><span class="c1"># 元素出队</span>
<a id="__codelineno-0-17" name="__codelineno-0-17" href="#__codelineno-0-17"></a><span class="n">pop</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="n">que</span><span class="o">.</span><span class="n">popleft</span><span class="p">()</span>
<a id="__codelineno-0-18" name="__codelineno-0-18" href="#__codelineno-0-18"></a>
<a id="__codelineno-0-19" name="__codelineno-0-19" href="#__codelineno-0-19"></a><span class="c1"># 获取队列的长度</span>
<a id="__codelineno-0-20" name="__codelineno-0-20" href="#__codelineno-0-20"></a><span class="n">size</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">que</span><span class="p">)</span>
<a id="__codelineno-0-21" name="__codelineno-0-21" href="#__codelineno-0-21"></a>
<a id="__codelineno-0-22" name="__codelineno-0-22" href="#__codelineno-0-22"></a><span class="c1"># 判断队列是否为空</span>
<a id="__codelineno-0-23" name="__codelineno-0-23" href="#__codelineno-0-23"></a><span class="n">is_empty</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">que</span><span class="p">)</span> <span class="o">==</span> <span class="mi">0</span>
<div class="highlight"><span class="filename">queue.py</span><pre><span></span><code><a id="__codelineno-0-1" name="__codelineno-0-1" href="#__codelineno-0-1"></a><span class="kn">from</span> <span class="nn">collections</span> <span class="kn">import</span> <span class="n">deque</span>
<a id="__codelineno-0-2" name="__codelineno-0-2" href="#__codelineno-0-2"></a>
<a id="__codelineno-0-3" name="__codelineno-0-3" href="#__codelineno-0-3"></a><span class="c1"># 初始化队列</span>
<a id="__codelineno-0-4" name="__codelineno-0-4" href="#__codelineno-0-4"></a><span class="c1"># 在 Python 中,我们一般将双向队列类 deque 当作队列使用</span>
<a id="__codelineno-0-5" name="__codelineno-0-5" href="#__codelineno-0-5"></a><span class="c1"># 虽然 queue.Queue() 是纯正的队列类,但不太好用,因此不推荐</span>
<a id="__codelineno-0-6" name="__codelineno-0-6" href="#__codelineno-0-6"></a><span class="n">que</span><span class="p">:</span> <span class="n">deque</span><span class="p">[</span><span class="nb">int</span><span class="p">]</span> <span class="o">=</span> <span class="n">deque</span><span class="p">()</span>
<a id="__codelineno-0-7" name="__codelineno-0-7" href="#__codelineno-0-7"></a>
<a id="__codelineno-0-8" name="__codelineno-0-8" href="#__codelineno-0-8"></a><span class="c1"># 元素入队</span>
<a id="__codelineno-0-9" name="__codelineno-0-9" href="#__codelineno-0-9"></a><span class="n">que</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-0-10" name="__codelineno-0-10" href="#__codelineno-0-10"></a><span class="n">que</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">3</span><span class="p">)</span>
<a id="__codelineno-0-11" name="__codelineno-0-11" href="#__codelineno-0-11"></a><span class="n">que</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span>
<a id="__codelineno-0-12" name="__codelineno-0-12" href="#__codelineno-0-12"></a><span class="n">que</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">5</span><span class="p">)</span>
<a id="__codelineno-0-13" name="__codelineno-0-13" href="#__codelineno-0-13"></a><span class="n">que</span><span class="o">.</span><span class="n">append</span><span class="p">(</span><span class="mi">4</span><span class="p">)</span>
<a id="__codelineno-0-14" name="__codelineno-0-14" href="#__codelineno-0-14"></a>
<a id="__codelineno-0-15" name="__codelineno-0-15" href="#__codelineno-0-15"></a><span class="c1"># 访问队首元素</span>
<a id="__codelineno-0-16" name="__codelineno-0-16" href="#__codelineno-0-16"></a><span class="n">front</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="n">que</span><span class="p">[</span><span class="mi">0</span><span class="p">];</span>
<a id="__codelineno-0-17" name="__codelineno-0-17" href="#__codelineno-0-17"></a>
<a id="__codelineno-0-18" name="__codelineno-0-18" href="#__codelineno-0-18"></a><span class="c1"># 元素出队</span>
<a id="__codelineno-0-19" name="__codelineno-0-19" href="#__codelineno-0-19"></a><span class="n">pop</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="n">que</span><span class="o">.</span><span class="n">popleft</span><span class="p">()</span>
<a id="__codelineno-0-20" name="__codelineno-0-20" href="#__codelineno-0-20"></a>
<a id="__codelineno-0-21" name="__codelineno-0-21" href="#__codelineno-0-21"></a><span class="c1"># 获取队列的长度</span>
<a id="__codelineno-0-22" name="__codelineno-0-22" href="#__codelineno-0-22"></a><span class="n">size</span><span class="p">:</span> <span class="nb">int</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">que</span><span class="p">)</span>
<a id="__codelineno-0-23" name="__codelineno-0-23" href="#__codelineno-0-23"></a>
<a id="__codelineno-0-24" name="__codelineno-0-24" href="#__codelineno-0-24"></a><span class="c1"># 判断队列是否为空</span>
<a id="__codelineno-0-25" name="__codelineno-0-25" href="#__codelineno-0-25"></a><span class="n">is_empty</span><span class="p">:</span> <span class="nb">bool</span> <span class="o">=</span> <span class="nb">len</span><span class="p">(</span><span class="n">que</span><span class="p">)</span> <span class="o">==</span> <span class="mi">0</span>
</code></pre></div>
</div>
<div class="tabbed-block">
@ -3741,7 +3743,7 @@
</div>
</div>
<h2 id="522">5.2.2 &nbsp; 队列实现<a class="headerlink" href="#522" title="Permanent link">&para;</a></h2>
<p>为了实现队列,我们需要一种数据结构,可以在一端添加元素,并在另一端删除元素。因此,链表和数组都可以用来实现队列</p>
<p>为了实现队列,我们需要一种数据结构,可以在一端添加元素,并在另一端删除元素。链表和数组都符合要求</p>
<h3 id="1">1. &nbsp; 基于链表的实现<a class="headerlink" href="#1" title="Permanent link">&para;</a></h3>
<p>如图 5-5 所示,我们可以将链表的“头节点”和“尾节点”分别视为“队首”和“队尾”,规定队尾仅可添加节点,队首仅可删除节点。</p>
<div class="tabbed-set tabbed-alternate" data-tabs="2:3"><input checked="checked" id="__tabbed_2_1" name="__tabbed_2" type="radio" /><input id="__tabbed_2_2" name="__tabbed_2" type="radio" /><input id="__tabbed_2_3" name="__tabbed_2" type="radio" /><div class="tabbed-labels"><label for="__tabbed_2_1">LinkedListQueue</label><label for="__tabbed_2_2">push()</label><label for="__tabbed_2_3">pop()</label></div>
@ -3759,7 +3761,7 @@
</div>
<p align="center"> 图 5-5 &nbsp; 基于链表实现队列的入队出队操作 </p>
<p>以下是用链表实现队列的代码</p>
<p>以下是用链表实现队列的代码</p>
<div class="tabbed-set tabbed-alternate" data-tabs="3:12"><input checked="checked" id="__tabbed_3_1" name="__tabbed_3" type="radio" /><input id="__tabbed_3_2" name="__tabbed_3" type="radio" /><input id="__tabbed_3_3" name="__tabbed_3" type="radio" /><input id="__tabbed_3_4" name="__tabbed_3" type="radio" /><input id="__tabbed_3_5" name="__tabbed_3" type="radio" /><input id="__tabbed_3_6" name="__tabbed_3" type="radio" /><input id="__tabbed_3_7" name="__tabbed_3" type="radio" /><input id="__tabbed_3_8" name="__tabbed_3" type="radio" /><input id="__tabbed_3_9" name="__tabbed_3" type="radio" /><input id="__tabbed_3_10" name="__tabbed_3" type="radio" /><input id="__tabbed_3_11" name="__tabbed_3" type="radio" /><input id="__tabbed_3_12" name="__tabbed_3" type="radio" /><div class="tabbed-labels"><label for="__tabbed_3_1">Python</label><label for="__tabbed_3_2">C++</label><label for="__tabbed_3_3">Java</label><label for="__tabbed_3_4">C#</label><label for="__tabbed_3_5">Go</label><label for="__tabbed_3_6">Swift</label><label for="__tabbed_3_7">JS</label><label for="__tabbed_3_8">TS</label><label for="__tabbed_3_9">Dart</label><label for="__tabbed_3_10">Rust</label><label for="__tabbed_3_11">C</label><label for="__tabbed_3_12">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
@ -4607,7 +4609,7 @@
</div>
</div>
<h3 id="2">2. &nbsp; 基于数组的实现<a class="headerlink" href="#2" title="Permanent link">&para;</a></h3>
<p>由于数组删除首元素的时间复杂度为 <span class="arithmatex">\(O(n)\)</span> ,这会导致出队操作效率较低。然而,我们可以采用以下巧妙方法来避免这个问题。</p>
<p>数组删除首元素的时间复杂度为 <span class="arithmatex">\(O(n)\)</span> ,这会导致出队操作效率较低。然而,我们可以采用以下巧妙方法来避免这个问题。</p>
<p>我们可以使用一个变量 <code>front</code> 指向队首元素的索引,并维护一个变量 <code>size</code> 用于记录队列长度。定义 <code>rear = front + size</code> ,这个公式计算出的 <code>rear</code> 指向队尾元素之后的下一个位置。</p>
<p>基于此设计,<strong>数组中包含元素的有效区间为 <code>[front, rear - 1]</code></strong>,各种操作的实现方法如图 5-6 所示。</p>
<ul>
@ -4630,8 +4632,8 @@
</div>
<p align="center"> 图 5-6 &nbsp; 基于数组实现队列的入队出队操作 </p>
<p>你可能会发现一个问题:在不断进行入队和出队的过程中,<code>front</code><code>rear</code> 都在向右移动,<strong>当它们到达数组尾部时就无法继续移动了</strong>。为解决此问题,我们可以将数组视为首尾相接的“环形数组”。</p>
<p>对于环形数组,我们需要让 <code>front</code><code>rear</code> 在越过数组尾部时,直接回到数组头部继续遍历。这种周期性规律可以通过“取余操作”来实现,代码如下所示</p>
<p>你可能会发现一个问题:在不断进行入队和出队的过程中,<code>front</code><code>rear</code> 都在向右移动,<strong>当它们到达数组尾部时就无法继续移动了</strong>。为解决此问题,我们可以将数组视为首尾相接的“环形数组”。</p>
<p>对于环形数组,我们需要让 <code>front</code><code>rear</code> 在越过数组尾部时,直接回到数组头部继续遍历。这种周期性规律可以通过“取余操作”来实现,代码如下所示</p>
<div class="tabbed-set tabbed-alternate" data-tabs="5:12"><input checked="checked" id="__tabbed_5_1" name="__tabbed_5" type="radio" /><input id="__tabbed_5_2" name="__tabbed_5" type="radio" /><input id="__tabbed_5_3" name="__tabbed_5" type="radio" /><input id="__tabbed_5_4" name="__tabbed_5" type="radio" /><input id="__tabbed_5_5" name="__tabbed_5" type="radio" /><input id="__tabbed_5_6" name="__tabbed_5" type="radio" /><input id="__tabbed_5_7" name="__tabbed_5" type="radio" /><input id="__tabbed_5_8" name="__tabbed_5" type="radio" /><input id="__tabbed_5_9" name="__tabbed_5" type="radio" /><input id="__tabbed_5_10" name="__tabbed_5" type="radio" /><input id="__tabbed_5_11" name="__tabbed_5" type="radio" /><input id="__tabbed_5_12" name="__tabbed_5" type="radio" /><div class="tabbed-labels"><label for="__tabbed_5_1">Python</label><label for="__tabbed_5_2">C++</label><label for="__tabbed_5_3">Java</label><label for="__tabbed_5_4">C#</label><label for="__tabbed_5_5">Go</label><label for="__tabbed_5_6">Swift</label><label for="__tabbed_5_7">JS</label><label for="__tabbed_5_8">TS</label><label for="__tabbed_5_9">Dart</label><label for="__tabbed_5_10">Rust</label><label for="__tabbed_5_11">C</label><label for="__tabbed_5_12">Zig</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
@ -5493,12 +5495,12 @@
</div>
</div>
</div>
<p>以上实现的队列仍然具有局限性,即其长度不可变。然而,这个问题不难解决,我们可以将数组替换为动态数组,从而引入扩容机制。有兴趣的同学可以尝试自行实现。</p>
<p>以上实现的队列仍然具有局限性其长度不可变。然而,这个问题不难解决,我们可以将数组替换为动态数组,从而引入扩容机制。有兴趣的读者可以尝试自行实现。</p>
<p>两种实现的对比结论与栈一致,在此不再赘述。</p>
<h2 id="523">5.2.3 &nbsp; 队列典型应用<a class="headerlink" href="#523" title="Permanent link">&para;</a></h2>
<ul>
<li><strong>淘宝订单</strong>。购物者下单后,订单将加入队列中,系统随后会根据顺序依次处理队列中的订单。在双十一期间,短时间内会产生海量订单,高并发成为工程师们需要重点攻克的问题。</li>
<li><strong>各类待办事项</strong>。任何需要实现“先来后到”功能的场景,例如打印机的任务队列、餐厅的出餐队列等队列在这些场景中可以有效地维护处理顺序。</li>
<li><strong>淘宝订单</strong>。购物者下单后,订单将加入队列中,系统随后会根据顺序处理队列中的订单。在双十一期间,短时间内会产生海量订单,高并发成为工程师们需要重点攻克的问题。</li>
<li><strong>各类待办事项</strong>。任何需要实现“先来后到”功能的场景,例如打印机的任务队列、餐厅的出餐队列等队列在这些场景中可以有效地维护处理顺序。</li>
</ul>
<!-- Source file information -->