Merge branch 'krahets:master' into master

This commit is contained in:
mgisr
2022-12-05 07:30:45 +08:00
committed by GitHub
23 changed files with 1222 additions and 22 deletions

View File

@ -112,7 +112,21 @@ comments: true
=== "JavaScript"
```js title="binary_search_tree.js"
/* 查找结点 */
function search(num) {
let cur = root;
// 循环查找,越过叶结点后跳出
while (cur !== null) {
// 目标结点在 root 的右子树中
if (cur.val < num) cur = cur.right;
// 目标结点在 root 的左子树中
else if (cur.val > num) cur = cur.left;
// 找到目标结点,跳出循环
else break;
}
// 返回目标结点
return cur;
}
```
=== "TypeScript"
@ -240,7 +254,27 @@ comments: true
=== "JavaScript"
```js title="binary_search_tree.js"
/* 插入结点 */
function insert(num) {
// 若树为空,直接提前返回
if (root === null) return null;
let cur = root, pre = null;
// 循环查找,越过叶结点后跳出
while (cur !== null) {
// 找到重复结点,直接返回
if (cur.val === num) return null;
pre = cur;
// 插入位置在 root 的右子树中
if (cur.val < num) cur = cur.right;
// 插入位置在 root 的左子树中
else cur = cur.left;
}
// 插入结点 val
let node = new Tree.TreeNode(num);
if (pre.val < num) pre.right = node;
else pre.left = node;
return node;
}
```
=== "TypeScript"
@ -471,7 +505,43 @@ comments: true
=== "JavaScript"
```js title="binary_search_tree.js"
/* 删除结点 */
function remove(num) {
// 若树为空,直接提前返回
if (root === null) return null;
let cur = root, pre = null;
// 循环查找,越过叶结点后跳出
while (cur !== null) {
// 找到待删除结点,跳出循环
if (cur.val === num) break;
pre = cur;
// 待删除结点在 root 的右子树中
if (cur.val < num) cur = cur.right;
// 待删除结点在 root 的左子树中
else cur = cur.left;
}
// 若无待删除结点,则直接返回
if (cur === null) return null;
// 子结点数量 = 0 or 1
if (cur.left === null || cur.right === null) {
// 当子结点数量 = 0 / 1 时, child = null / 该子结点
let child = cur.left !== null ? cur.left : cur.right;
// 删除结点 cur
if (pre.left === cur) pre.left = child;
else pre.right = child;
}
// 子结点数量 = 2
else {
// 获取中序遍历中 cur 的下一个结点
let nex = min(cur.right);
let tmp = nex.val;
// 递归删除结点 nex
remove(nex.val);
// 将 nex 的值复制给 cur
cur.val = tmp;
}
return cur;
}
```
=== "TypeScript"
@ -496,7 +566,7 @@ comments: true
假设给定 $n$ 个数字,最常用的存储方式是「数组」,那么对于这串乱序的数字,常见操作的效率为:
- **查找元素:** 由于数组是序的,因此需要遍历数组来确定,使用 $O(n)$ 时间;
- **查找元素:** 由于数组是序的,因此需要遍历数组来确定,使用 $O(n)$ 时间;
- **插入元素:** 只需将元素添加至数组尾部即可,使用 $O(1)$ 时间;
- **删除元素:** 先查找元素,使用 $O(\log n)$ 时间,再在数组中删除该元素,使用 $O(n)$ 时间;
- **获取最小 / 最大元素:** 需要遍历数组来确定,使用 $O(n)$ 时间;
@ -505,14 +575,14 @@ comments: true
- **查找元素:** 由于数组已排序,可以使用二分查找,使用 $O(\log n)$ 时间;
- **插入元素:** 为了保持数组是有序的,需插入到数组某位置,平均使用 $O(n)$ 时间;
- **删除元素:** 与序数组中的情况相同,使用 $O(n)$ 时间;
- **删除元素:** 与序数组中的情况相同,使用 $O(n)$ 时间;
- **获取最小 / 最大元素:** 数组头部和尾部元素即是最小和最大元素,使用 $O(1)$ 时间;
观察发现,序数组和序数组中的各类操作的时间复杂度是 “偏科” 的,即有的快有的慢;**而二叉搜索树的各项操作的时间复杂度都是对数阶,在数据量 $n$ 很大时有巨大优势**。
观察发现,序数组和序数组中的各类操作的时间复杂度是 “偏科” 的,即有的快有的慢;**而二叉搜索树的各项操作的时间复杂度都是对数阶,在数据量 $n$ 很大时有巨大优势**。
<div class="center-table" markdown>
| | 序数组 | 序数组 | 二叉搜索树 |
| | 序数组 | 序数组 | 二叉搜索树 |
| ------------------- | -------- | ----------- | ----------- |
| 查找指定元素 | $O(n)$ | $O(\log n)$ | $O(\log n)$ |
| 插入元素 | $O(1)$ | $O(n)$ | $O(\log n)$ |

View File

@ -63,7 +63,12 @@ comments: true
=== "JavaScript"
```js title=""
/* 链表结点类 */
function TreeNode(val, left, right) {
this.val = (val === undefined ? 0 : val) // 结点值
this.left = (left === undefined ? null : left) // 左子结点指针
this.right = (right === undefined ? null : right) // 右子结点指针
}
```
=== "TypeScript"
@ -193,7 +198,18 @@ comments: true
=== "JavaScript"
```js title="binary_tree.js"
/* 初始化二叉树 */
// 初始化结点
let n1 = new TreeNode(1),
n2 = new TreeNode(2),
n3 = new TreeNode(3),
n4 = new TreeNode(4),
n5 = new TreeNode(5);
// 构建引用指向(即指针)
n1.left = n2;
n1.right = n3;
n2.left = n4;
n2.right = n5;
```
=== "TypeScript"
@ -265,7 +281,14 @@ comments: true
=== "JavaScript"
```js title="binary_tree.js"
/* 插入与删除结点 */
let P = new TreeNode(0);
// 在 n1 -> n2 中间插入结点 P
n1.left = P;
P.left = n2;
// 删除结点 P
n1.left = n2;
```
=== "TypeScript"
@ -387,7 +410,23 @@ comments: true
=== "JavaScript"
```js title="binary_tree_bfs.js"
/* 层序遍历 */
function hierOrder(root) {
// 初始化队列,加入根结点
let queue = [root];
// 初始化一个列表,用于保存遍历序列
let list = [];
while (queue.length) {
let node = queue.shift(); // 队列出队
list.push(node.val); // 保存结点
if (node.left)
queue.push(node.left); // 左子结点入队
if (node.right)
queue.push(node.right); // 右子结点入队
}
return list;
}
```
=== "TypeScript"
@ -536,7 +575,32 @@ comments: true
=== "JavaScript"
```js title="binary_tree_dfs.js"
/* 前序遍历 */
function preOrder(root){
if (root === null) return;
// 访问优先级:根结点 -> 左子树 -> 右子树
list.push(root.val);
preOrder(root.left);
preOrder(root.right);
}
/* 中序遍历 */
function inOrder(root) {
if (root === null) return;
// 访问优先级:左子树 -> 根结点 -> 右子树
inOrder(root.left);
list.push(root.val);
inOrder(root.right);
}
/* 后序遍历 */
function postOrder(root) {
if (root === null) return;
// 访问优先级:左子树 -> 右子树 -> 根结点
postOrder(root.left);
postOrder(root.right);
list.push(root.val);
}
```
=== "TypeScript"

View File

@ -37,7 +37,7 @@ comments: true
## 平衡二叉树
**「平衡二叉树 Balanced Binary Tree」又称「AVL 树」** ,其任意结点的左子树和右子树的高度之差的绝对值 $\leq 1$ 。
**「平衡二叉树 Balanced Binary Tree」** ,其任意结点的左子树和右子树的高度之差的绝对值 $\leq 1$ 。
![balanced_binary_tree](binary_tree_types.assets/balanced_binary_tree.png)