Add subtitles to docs

This commit is contained in:
krahets
2023-07-21 21:54:51 +08:00
parent 1a55dbdf2e
commit ca5bde2b6c
16 changed files with 109 additions and 35 deletions

View File

@ -403,6 +403,8 @@ $$
![爬楼梯的动态规划过程](intro_to_dynamic_programming.assets/climbing_stairs_dp.png)
## 状态压缩
细心的你可能发现,**由于 $dp[i]$ 只与 $dp[i-1]$ 和 $dp[i-2]$ 有关,因此我们无需使用一个数组 `dp` 来存储所有子问题的解**,而只需两个变量滚动前进即可。如以下代码所示,由于省去了数组 `dp` 占用的空间,因此空间复杂度从 $O(n)$ 降低至 $O(1)$ 。
=== "Java"
@ -472,9 +474,3 @@ $$
```
**我们将这种空间优化技巧称为「状态压缩」**。在许多动态规划问题中,当前状态仅与前面有限个状态有关,不必保存所有的历史状态,这时我们可以应用状态压缩,只保留必要的状态,通过“降维”来节省内存空间。
总的看来,**子问题分解是一种通用的算法思路,在分治、动态规划、回溯中各有特点**
- 分治算法将原问题划分为几个独立的子问题,然后递归解决子问题,最后合并子问题的解得到原问题的解。例如,归并排序将长数组不断划分为两个短子数组,再将排序好的子数组合并为排序好的长数组。
- 动态规划也是将原问题分解为多个子问题,但与分治算法的主要区别是,**动态规划中的子问题往往不是相互独立的**,原问题的解依赖于子问题的解,而子问题的解又依赖于更小的子问题的解。
- 回溯算法在尝试和回退中穷举所有可能的解,并通过剪枝避免不必要的搜索分支。原问题的解由一系列决策步骤构成,我们可以将每个决策步骤之前的子序列看作为一个子问题。