Add subtitles to docs

This commit is contained in:
krahets
2023-07-21 21:54:51 +08:00
parent 1a55dbdf2e
commit ca5bde2b6c
16 changed files with 109 additions and 35 deletions

View File

@@ -12,12 +12,16 @@
![n 皇后问题的约束条件](n_queens_problem.assets/n_queens_constraints.png)
### 皇后放置策略
皇后的数量和棋盘的行数都为 $n$ ,因此我们容易得到第一个推论:**棋盘每行都允许且只允许放置一个皇后**。这意味着,我们可以采取逐行放置策略:从第一行开始,在每行放置一个皇后,直至最后一行结束。**此策略起到了剪枝的作用**,它避免了同一行出现多个皇后的所有搜索分支。
下图展示了 $4$ 皇后问题的逐行放置过程。受篇幅限制,下图仅展开了第一行的一个搜索分支。在搜索过程中,我们将不满足列约束和对角线约束的方案都剪枝了。
![逐行放置策略](n_queens_problem.assets/n_queens_placing.png)
### 列与对角线剪枝
为了实现根据列约束剪枝,我们可以利用一个长度为 $n$ 的布尔型数组 `cols` 记录每一列是否有皇后。在每次决定放置前,我们通过 `cols` 将已有皇后的列剪枝,并在回溯中动态更新 `cols` 的状态。
那么,如何处理对角线约束呢?设棋盘中某个格子的行列索引为 `(row, col)` ,观察矩阵的某条主对角线,**我们发现该对角线上所有格子的行索引减列索引相等**,即 `row - col` 为恒定值。换句话说,若两个格子满足 `row1 - col1 == row2 - col2` ,则这两个格子一定处在一条主对角线上。
@@ -28,6 +32,8 @@
同理,**次对角线上的所有格子的 `row + col` 是恒定值**。我们可以使用同样的方法,借助数组 `diag2` 来处理次对角线约束。
### 代码实现
根据以上分析,我们便可以写出 $n$ 皇后的解题代码。
=== "Java"
@@ -118,7 +124,7 @@
[class]{}-[func]{nQueens}
```
## 复杂度分析
### 复杂度分析
逐行放置 $n$ 次,考虑列约束,则从第一行到最后一行分别有 $n, n-1, \cdots, 2, 1$ 个选择,**因此时间复杂度为 $O(n!)$** 。实际上,根据对角线约束的剪枝也能够大幅地缩小搜索空间,因而搜索效率往往优于以上时间复杂度。

View File

@@ -14,7 +14,7 @@
</div>
## 无重复的情况
## 无相等元素的情况
!!! question
@@ -28,6 +28,8 @@
![全排列的递归树](permutations_problem.assets/permutations_i.png)
### 代码实现
想清楚以上信息之后,我们就可以在框架代码中做“完形填空”了。为了缩短代码行数,我们不单独实现框架代码中的各个函数,而是将他们展开在 `backtrack()` 函数中。
=== "Java"
@@ -118,13 +120,15 @@
[class]{}-[func]{permutationsI}
```
### 重复选择剪枝
需要重点关注的是,我们引入了一个布尔型数组 `selected` ,它的长度与输入数组长度相等,其中 `selected[i]` 表示 `choices[i]` 是否已被选择。我们利用 `selected` 避免某个元素被重复选择,从而实现剪枝。
如下图所示,假设我们第一轮选择 1 ,第二轮选择 3 ,第三轮选择 2 ,则需要在第二轮剪掉元素 1 的分支,在第三轮剪掉元素 1, 3 的分支。**此剪枝操作可将搜索空间大小从 $O(n^n)$ 降低至 $O(n!)$** 。
![全排列剪枝示例](permutations_problem.assets/permutations_i_pruning.png)
## 考虑重复的情况
## 考虑相等元素的情况
!!! question
@@ -138,9 +142,13 @@
观察发现,在第一轮中,选择 $1$ 或选择 $\hat{1}$ 是等价的,因为在这两个选择之下生成的所有排列都是重复的。因此,我们应该把 $\hat{1}$ 剪枝掉。同理,在第一轮选择 $2$ 后,第二轮选择中的 $1$ 和 $\hat{1}$ 也会产生重复分支,因此也需要将第二轮的 $\hat{1}$ 剪枝。
本质上看,**我们的目标是实现在某一轮选择中,多个相等的元素仅被选择一次**。
![重复排列剪枝](permutations_problem.assets/permutations_ii_pruning.png)
本质上看,**我们的目标是实现在某一轮选择中,多个相等的元素仅被选择一次**。因此,在上一题的代码的基础上,我们考虑在每一轮选择中开启一个哈希表 `duplicated` ,用于记录该轮中已经尝试过的元素,并将重复元素剪枝。
### 代码实现
在上一题的代码的基础上,我们考虑在每一轮选择中开启一个哈希表 `duplicated` ,用于记录该轮中已经尝试过的元素,并将重复元素剪枝。
=== "Java"
@@ -230,6 +238,8 @@
[class]{}-[func]{permutationsII}
```
### 两种剪枝对比
注意,虽然 `selected` 和 `duplicated` 都起到剪枝的作用,但他们剪掉的是不同的分支:
- **剪枝条件一**:整个搜索过程中只有一个 `selected` 。它记录的是当前状态中包含哪些元素,作用是避免某个元素在 `state` 中重复出现。
@@ -239,7 +249,7 @@
![两种剪枝条件的作用范围](permutations_problem.assets/permutations_ii_pruning_summary.png)
## 复杂度分析
### 复杂度分析
假设元素两两之间互不相同,则 $n$ 个元素共有 $n!$ 种排列(阶乘);在记录结果时,需要复制长度为 $n$ 的列表,使用 $O(n)$ 时间。因此,**时间复杂度为 $O(n!n)$** 。

View File

@@ -1,12 +1,14 @@
# 子集和问题
## 无重复元素的情况
!!! question
给定一个正整数数组 `nums` 和一个目标正整数 `target` ,请找出所有可能的组合,使得组合中的元素和等于 `target` 。给定数组无重复元素,每个元素可以被选取多次。请以列表形式返回这些组合,列表中不应包含重复组合。
例如,输入集合 $\{3, 4, 5\}$ 和目标整数 $9$ ,由于集合中的数字可以被重复选取,因此解为 $\{3, 3, 3\}, \{4, 5\}$ 。请注意,子集是不区分元素顺序的,例如 $\{4, 5\}$ 和 $\{5, 4\}$ 是同一个子集。
## 从全排列引出解法
### 从全排列引出解法
类似于上节全排列问题的解法,我们可以把子集的生成过程想象成一系列选择的结果,并在选择过程中实时更新“元素和”,当元素和等于 `target` 时,就将子集记录至结果列表。
@@ -104,7 +106,7 @@
![子集搜索与越界剪枝](subset_sum_problem.assets/subset_sum_i_naive.png)
## 重复子集剪枝
### 重复子集剪枝
为了去除重复子集,**一种直接的思路是对结果列表进行去重**。但这个方法效率很低,因为:
@@ -121,6 +123,8 @@
总结来看,给定输入数组 $[x_1, x_2, \cdots, x_n]$ ,设搜索过程中的选择序列为 $[x_{i_1}, x_{i_2}, \cdots , x_{i_m}]$ ,则该选择序列需要满足 $i_1 \leq i_2 \leq \cdots \leq i_m$ 。**不满足该条件的选择序列都是重复子集**。
### 代码实现
为实现该剪枝,我们初始化变量 `start` ,用于指示遍历起点。**当做出选择 $x_{i}$ 后,设定下一轮从索引 $i$ 开始遍历**,从而完成子集去重。
除此之外,我们还对代码进行了两项优化。首先,我们在开启搜索前将数组 `nums` 排序,在搜索过程中,**当子集和超过 `target` 时直接结束循环**,因为后边的元素更大,其子集和都一定会超过 `target` 。其次,**我们通过在 `target` 上执行减法来统计元素和**,当 `target` 等于 $0$ 时记录解,省去了元素和变量 `total` 。
@@ -217,7 +221,7 @@
![子集和 I 回溯过程](subset_sum_problem.assets/subset_sum_i.png)
## 相等元素剪枝
## 考虑重复元素的情况
!!! question
@@ -227,10 +231,14 @@
![相等元素导致的重复子集](subset_sum_problem.assets/subset_sum_ii_repeat.png)
### 相等元素剪枝
为解决此问题,**我们需要限制相等元素在每一轮中只被选择一次**。实现方式比较巧妙:由于数组是已排序的,因此相等元素都是相邻的。利用该特性,在某轮选择中,若当前元素与其左边元素相等,则说明它已经被选择过,因此直接跳过当前元素。
与此同时,**本题规定数组元素只能被选择一次**。幸运的是,我们也可以利用变量 `start` 来满足该约束:当做出选择 $x_{i}$ 后,设定下一轮从索引 $i + 1$ 开始向后遍历。这样即能去除重复子集,也能避免重复选择相等元素。
### 代码实现
=== "Java"
```java title="subset_sum_ii.java"