This commit is contained in:
krahets
2023-04-17 18:24:27 +08:00
parent f76b7ed47c
commit ca2ccfea0b
70 changed files with 12269 additions and 13539 deletions

View File

@ -15,7 +15,7 @@
<link rel="canonical" href="https://www.hello-algo.com/chapter_backtracking/backtracking_algorithm/">
<link rel="prev" href="../../chapter_sorting/summary/">
<link rel="prev" href="../../chapter_searching/summary/">
<link rel="next" href="../../chapter_appendix/installation/">
@ -25,7 +25,7 @@
<title>12.1.   回溯算法New - Hello 算法</title>
<title>13.1.   回溯算法New - Hello 算法</title>
@ -79,7 +79,7 @@
<div data-md-component="skip">
<a href="#121" class="md-skip">
<a href="#131" class="md-skip">
跳转至
</a>
@ -113,7 +113,7 @@
<div class="md-header__topic" data-md-component="header-topic">
<span class="md-ellipsis">
12.1. &nbsp; 回溯算法New
13.1. &nbsp; 回溯算法New
</span>
</div>
@ -441,8 +441,6 @@
<label class="md-nav__link" for="__nav_3" id="__nav_3_label" tabindex="0">
@ -504,23 +502,9 @@
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/space_time_tradeoff/" class="md-nav__link">
2.4. &nbsp; 权衡时间与空间
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_computational_complexity/summary/" class="md-nav__link">
2.5. &nbsp; 小结
2.4. &nbsp; 小结
</a>
</li>
@ -847,21 +831,17 @@
<label class="md-nav__link" for="__nav_7" id="__nav_7_label" tabindex="0">
6. &nbsp; &nbsp; 散列表
6. &nbsp; &nbsp; 二分查找
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_7_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_7">
<span class="md-nav__icon md-icon"></span>
6. &nbsp; &nbsp; 散列表
6. &nbsp; &nbsp; 二分查找
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -871,36 +851,8 @@
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_map/" class="md-nav__link">
6.1. &nbsp; 哈希表
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/hash_collision/" class="md-nav__link">
6.2. &nbsp; 哈希冲突处理
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_hashing/summary/" class="md-nav__link">
6.3. &nbsp; 小结
<a href="../../chapter_binary_search/binary_search/" class="md-nav__link">
6.1. &nbsp; 二分查找
</a>
</li>
@ -938,21 +890,17 @@
<label class="md-nav__link" for="__nav_8" id="__nav_8_label" tabindex="0">
7. &nbsp; &nbsp;
7. &nbsp; &nbsp; 散列表
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_8_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_8">
<span class="md-nav__icon md-icon"></span>
7. &nbsp; &nbsp;
7. &nbsp; &nbsp; 散列表
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -962,8 +910,8 @@
<li class="md-nav__item">
<a href="../../chapter_tree/binary_tree/" class="md-nav__link">
7.1. &nbsp; 二叉树
<a href="../../chapter_hashing/hash_map/" class="md-nav__link">
7.1. &nbsp; 哈希表
</a>
</li>
@ -976,8 +924,8 @@
<li class="md-nav__item">
<a href="../../chapter_tree/binary_tree_traversal/" class="md-nav__link">
7.2. &nbsp; 二叉树遍历
<a href="../../chapter_hashing/hash_collision/" class="md-nav__link">
7.2. &nbsp; 哈希冲突处理
</a>
</li>
@ -990,36 +938,8 @@
<li class="md-nav__item">
<a href="../../chapter_tree/binary_search_tree/" class="md-nav__link">
7.3. &nbsp; 二叉搜索树
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/avl_tree/" class="md-nav__link">
7.4. &nbsp; AVL 树 *
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/summary/" class="md-nav__link">
7.5. &nbsp; 小结
<a href="../../chapter_hashing/summary/" class="md-nav__link">
7.3. &nbsp; 小结
</a>
</li>
@ -1057,17 +977,21 @@
<label class="md-nav__link" for="__nav_9" id="__nav_9_label" tabindex="0">
8. &nbsp; &nbsp;
8. &nbsp; &nbsp;
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_9_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_9">
<span class="md-nav__icon md-icon"></span>
8. &nbsp; &nbsp;
8. &nbsp; &nbsp;
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1077,8 +1001,8 @@
<li class="md-nav__item">
<a href="../../chapter_heap/heap/" class="md-nav__link">
8.1. &nbsp;
<a href="../../chapter_tree/binary_tree/" class="md-nav__link">
8.1. &nbsp; 二叉树
</a>
</li>
@ -1091,8 +1015,8 @@
<li class="md-nav__item">
<a href="../../chapter_heap/build_heap/" class="md-nav__link">
8.2. &nbsp; 建堆操作 *
<a href="../../chapter_tree/binary_tree_traversal/" class="md-nav__link">
8.2. &nbsp; 二叉树遍历
</a>
</li>
@ -1105,8 +1029,36 @@
<li class="md-nav__item">
<a href="../../chapter_heap/summary/" class="md-nav__link">
8.3. &nbsp; 小结
<a href="../../chapter_tree/binary_search_tree/" class="md-nav__link">
8.3. &nbsp; 二叉搜索树
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/avl_tree/" class="md-nav__link">
8.4. &nbsp; AVL 树 *
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_tree/summary/" class="md-nav__link">
8.5. &nbsp; 小结
</a>
</li>
@ -1144,19 +1096,17 @@
<label class="md-nav__link" for="__nav_10" id="__nav_10_label" tabindex="0">
9. &nbsp; &nbsp;
9. &nbsp; &nbsp;
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_10_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_10">
<span class="md-nav__icon md-icon"></span>
9. &nbsp; &nbsp;
9. &nbsp; &nbsp;
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1166,8 +1116,8 @@
<li class="md-nav__item">
<a href="../../chapter_graph/graph/" class="md-nav__link">
9.1. &nbsp;
<a href="../../chapter_heap/heap/" class="md-nav__link">
9.1. &nbsp;
</a>
</li>
@ -1180,8 +1130,8 @@
<li class="md-nav__item">
<a href="../../chapter_graph/graph_operations/" class="md-nav__link">
9.2. &nbsp; 图基础操作
<a href="../../chapter_heap/build_heap/" class="md-nav__link">
9.2. &nbsp; 建堆操作 *
</a>
</li>
@ -1194,22 +1144,8 @@
<li class="md-nav__item">
<a href="../../chapter_graph/graph_traversal/" class="md-nav__link">
9.3. &nbsp; 图的遍历
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_graph/summary/" class="md-nav__link">
9.4. &nbsp; 小结
<a href="../../chapter_heap/summary/" class="md-nav__link">
9.3. &nbsp; 小结
</a>
</li>
@ -1252,14 +1188,14 @@
<label class="md-nav__link" for="__nav_11" id="__nav_11_label" tabindex="0">
10. &nbsp; &nbsp; 查找算法
10. &nbsp; &nbsp;
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_11_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_11">
<span class="md-nav__icon md-icon"></span>
10. &nbsp; &nbsp; 查找算法
10. &nbsp; &nbsp;
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1269,8 +1205,8 @@
<li class="md-nav__item">
<a href="../../chapter_searching/linear_search/" class="md-nav__link">
10.1. &nbsp; 线性查找
<a href="../../chapter_graph/graph/" class="md-nav__link">
10.1. &nbsp;
</a>
</li>
@ -1283,8 +1219,8 @@
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search/" class="md-nav__link">
10.2. &nbsp; 二分查找
<a href="../../chapter_graph/graph_operations/" class="md-nav__link">
10.2. &nbsp; 图基础操作
</a>
</li>
@ -1297,8 +1233,8 @@
<li class="md-nav__item">
<a href="../../chapter_searching/hashing_search/" class="md-nav__link">
10.3. &nbsp; 哈希查找
<a href="../../chapter_graph/graph_traversal/" class="md-nav__link">
10.3. &nbsp; 图的遍历
</a>
</li>
@ -1311,7 +1247,7 @@
<li class="md-nav__item">
<a href="../../chapter_searching/summary/" class="md-nav__link">
<a href="../../chapter_graph/summary/" class="md-nav__link">
10.4. &nbsp; 小结
</a>
</li>
@ -1453,7 +1389,7 @@
<li class="md-nav__item">
<a href="../../chapter_sorting/bucket_sort/" class="md-nav__link">
11.6. &nbsp; 桶排序New
11.6. &nbsp; 桶排序
</a>
</li>
@ -1467,7 +1403,7 @@
<li class="md-nav__item">
<a href="../../chapter_sorting/counting_sort/" class="md-nav__link">
11.7. &nbsp; 计数排序New
11.7. &nbsp; 计数排序
</a>
</li>
@ -1481,7 +1417,7 @@
<li class="md-nav__item">
<a href="../../chapter_sorting/radix_sort/" class="md-nav__link">
11.8. &nbsp; 基数排序New
11.8. &nbsp; 基数排序
</a>
</li>
@ -1514,6 +1450,93 @@
<li class="md-nav__item md-nav__item--section md-nav__item--nested">
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_13" >
<label class="md-nav__link" for="__nav_13" id="__nav_13_label" tabindex="0">
12. &nbsp; &nbsp; 搜索算法
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_13_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_13">
<span class="md-nav__icon md-icon"></span>
12. &nbsp; &nbsp; 搜索算法
</label>
<ul class="md-nav__list" data-md-scrollfix>
<li class="md-nav__item">
<a href="../../chapter_searching/searching_algorithm_revisited/" class="md-nav__link">
12.1. &nbsp; 搜索算法New
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/replace_linear_by_hashing/" class="md-nav__link">
12.2. &nbsp; 哈希优化策略
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/summary/" class="md-nav__link">
12.3. &nbsp; 小结
</a>
</li>
</ul>
</nav>
</li>
@ -1525,7 +1548,7 @@
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_13" checked>
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_14" checked>
@ -1533,15 +1556,15 @@
<label class="md-nav__link" for="__nav_13" id="__nav_13_label" tabindex="0">
12. &nbsp; &nbsp; 回溯算法
<label class="md-nav__link" for="__nav_14" id="__nav_14_label" tabindex="0">
13. &nbsp; &nbsp; 回溯算法
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_13_label" aria-expanded="true">
<label class="md-nav__title" for="__nav_13">
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_14_label" aria-expanded="true">
<label class="md-nav__title" for="__nav_14">
<span class="md-nav__icon md-icon"></span>
12. &nbsp; &nbsp; 回溯算法
13. &nbsp; &nbsp; 回溯算法
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1561,12 +1584,12 @@
<label class="md-nav__link md-nav__link--active" for="__toc">
12.1. &nbsp; 回溯算法New
13.1. &nbsp; 回溯算法New
<span class="md-nav__icon md-icon"></span>
</label>
<a href="./" class="md-nav__link md-nav__link--active">
12.1. &nbsp; 回溯算法New
13.1. &nbsp; 回溯算法New
</a>
@ -1585,36 +1608,36 @@
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
<li class="md-nav__item">
<a href="#1211" class="md-nav__link">
12.1.1. &nbsp; 尝试与回退
<a href="#1311" class="md-nav__link">
13.1.1. &nbsp; 尝试与回退
</a>
</li>
<li class="md-nav__item">
<a href="#1212" class="md-nav__link">
12.1.2. &nbsp; 剪枝
<a href="#1312" class="md-nav__link">
13.1.2. &nbsp; 剪枝
</a>
</li>
<li class="md-nav__item">
<a href="#1213" class="md-nav__link">
12.1.3. &nbsp; 常用术语
<a href="#1313" class="md-nav__link">
13.1.3. &nbsp; 常用术语
</a>
</li>
<li class="md-nav__item">
<a href="#1214" class="md-nav__link">
12.1.4. &nbsp; 框架代码
<a href="#1314" class="md-nav__link">
13.1.4. &nbsp; 框架代码
</a>
</li>
<li class="md-nav__item">
<a href="#1215" class="md-nav__link">
12.1.5. &nbsp; 典型例题
<a href="#1315" class="md-nav__link">
13.1.5. &nbsp; 典型例题
</a>
</li>
@ -1649,7 +1672,7 @@
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_14" >
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_15" >
@ -1659,15 +1682,15 @@
<label class="md-nav__link" for="__nav_14" id="__nav_14_label" tabindex="0">
13. &nbsp; &nbsp; 附录
<label class="md-nav__link" for="__nav_15" id="__nav_15_label" tabindex="0">
14. &nbsp; &nbsp; 附录
<span class="md-nav__icon md-icon"></span>
</label>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_14_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_14">
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_15_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_15">
<span class="md-nav__icon md-icon"></span>
13. &nbsp; &nbsp; 附录
14. &nbsp; &nbsp; 附录
</label>
<ul class="md-nav__list" data-md-scrollfix>
@ -1678,7 +1701,7 @@
<li class="md-nav__item">
<a href="../../chapter_appendix/installation/" class="md-nav__link">
13.1. &nbsp; 编程环境安装
14.1. &nbsp; 编程环境安装
</a>
</li>
@ -1692,7 +1715,7 @@
<li class="md-nav__item">
<a href="../../chapter_appendix/contribution/" class="md-nav__link">
13.2. &nbsp; 一起参与创作
14.2. &nbsp; 一起参与创作
</a>
</li>
@ -1720,7 +1743,7 @@
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_15" >
<input class="md-nav__toggle md-toggle " type="checkbox" id="__nav_16" >
@ -1737,8 +1760,8 @@
</div>
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_15_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_15">
<nav class="md-nav" data-md-level="1" aria-labelledby="__nav_16_label" aria-expanded="false">
<label class="md-nav__title" for="__nav_16">
<span class="md-nav__icon md-icon"></span>
参考文献
</label>
@ -1779,36 +1802,36 @@
<ul class="md-nav__list" data-md-component="toc" data-md-scrollfix>
<li class="md-nav__item">
<a href="#1211" class="md-nav__link">
12.1.1. &nbsp; 尝试与回退
<a href="#1311" class="md-nav__link">
13.1.1. &nbsp; 尝试与回退
</a>
</li>
<li class="md-nav__item">
<a href="#1212" class="md-nav__link">
12.1.2. &nbsp; 剪枝
<a href="#1312" class="md-nav__link">
13.1.2. &nbsp; 剪枝
</a>
</li>
<li class="md-nav__item">
<a href="#1213" class="md-nav__link">
12.1.3. &nbsp; 常用术语
<a href="#1313" class="md-nav__link">
13.1.3. &nbsp; 常用术语
</a>
</li>
<li class="md-nav__item">
<a href="#1214" class="md-nav__link">
12.1.4. &nbsp; 框架代码
<a href="#1314" class="md-nav__link">
13.1.4. &nbsp; 框架代码
</a>
</li>
<li class="md-nav__item">
<a href="#1215" class="md-nav__link">
12.1.5. &nbsp; 典型例题
<a href="#1315" class="md-nav__link">
13.1.5. &nbsp; 典型例题
</a>
</li>
@ -1836,7 +1859,7 @@
<h1 id="121">12.1. &nbsp; 回溯算法<a class="headerlink" href="#121" title="Permanent link">&para;</a></h1>
<h1 id="131">13.1. &nbsp; 回溯算法<a class="headerlink" href="#131" title="Permanent link">&para;</a></h1>
<p>「回溯算法 Backtracking Algorithm」是一种通过穷举来解决问题的方法它的核心思想是从一个初始状态出发暴力搜索所有可能的解决方案当遇到正确的解则将其记录直到找到解或者尝试了所有可能的选择都无法找到解为止。</p>
<p>回溯算法通常采用「深度优先搜索」来遍历解空间。在二叉树章节中,我们提到前序、中序和后序遍历都属于深度优先搜索。下面,我们从二叉树的前序遍历入手,逐步了解回溯算法的工作原理。</p>
<div class="admonition question">
@ -1904,7 +1927,21 @@
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">preorder_find_nodes.cs</span><pre><span></span><code><a id="__codelineno-7-1" name="__codelineno-7-1" href="#__codelineno-7-1"></a><span class="na">[class]</span><span class="p">{</span><span class="n">preorder_find_nodes</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">preOrder</span><span class="p">}</span>
<div class="highlight"><span class="filename">preorder_find_nodes.cs</span><pre><span></span><code><a id="__codelineno-7-1" name="__codelineno-7-1" href="#__codelineno-7-1"></a><span class="cm">/* 前序遍历 */</span>
<a id="__codelineno-7-2" name="__codelineno-7-2" href="#__codelineno-7-2"></a><span class="k">void</span><span class="w"> </span><span class="nf">preOrder</span><span class="p">(</span><span class="n">TreeNode</span><span class="w"> </span><span class="n">root</span><span class="p">)</span>
<a id="__codelineno-7-3" name="__codelineno-7-3" href="#__codelineno-7-3"></a><span class="p">{</span>
<a id="__codelineno-7-4" name="__codelineno-7-4" href="#__codelineno-7-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">root</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="k">null</span><span class="p">)</span>
<a id="__codelineno-7-5" name="__codelineno-7-5" href="#__codelineno-7-5"></a><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-6" name="__codelineno-7-6" href="#__codelineno-7-6"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-7-7" name="__codelineno-7-7" href="#__codelineno-7-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-7-8" name="__codelineno-7-8" href="#__codelineno-7-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">root</span><span class="p">.</span><span class="n">val</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">7</span><span class="p">)</span>
<a id="__codelineno-7-9" name="__codelineno-7-9" href="#__codelineno-7-9"></a><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-7-10" name="__codelineno-7-10" href="#__codelineno-7-10"></a><span class="w"> </span><span class="c1">// 记录解</span>
<a id="__codelineno-7-11" name="__codelineno-7-11" href="#__codelineno-7-11"></a><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="n">Add</span><span class="p">(</span><span class="n">root</span><span class="p">);</span>
<a id="__codelineno-7-12" name="__codelineno-7-12" href="#__codelineno-7-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-7-13" name="__codelineno-7-13" href="#__codelineno-7-13"></a><span class="w"> </span><span class="n">preOrder</span><span class="p">(</span><span class="n">root</span><span class="p">.</span><span class="n">left</span><span class="p">);</span>
<a id="__codelineno-7-14" name="__codelineno-7-14" href="#__codelineno-7-14"></a><span class="w"> </span><span class="n">preOrder</span><span class="p">(</span><span class="n">root</span><span class="p">.</span><span class="n">right</span><span class="p">);</span>
<a id="__codelineno-7-15" name="__codelineno-7-15" href="#__codelineno-7-15"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
@ -1920,7 +1957,7 @@
<p><img alt="在前序遍历中搜索节点" src="../backtracking_algorithm.assets/preorder_find_nodes.png" /></p>
<p align="center"> Fig. 在前序遍历中搜索节点 </p>
<h2 id="1211">12.1.1. &nbsp; 尝试与回退<a class="headerlink" href="#1211" title="Permanent link">&para;</a></h2>
<h2 id="1311">13.1.1. &nbsp; 尝试与回退<a class="headerlink" href="#1311" title="Permanent link">&para;</a></h2>
<p><strong>之所以称之为回溯算法,是因为该算法在搜索解空间时会采用“尝试”与“回退”的策略</strong>。当算法在搜索过程中遇到某个状态无法继续前进或无法得到满足条件的解时,它会撤销上一步的选择,退回到之前的状态,并尝试其他可能的选择。</p>
<p>对于例题一,访问每个节点都代表一次“尝试”,而越过叶结点或返回父节点的 <code>return</code> 则表示“回退”。</p>
<p>值得说明的是,<strong>回退并不等价于函数返回</strong>。为解释这一点,我们对例题一稍作拓展。</p>
@ -2001,7 +2038,25 @@
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">preorder_find_paths.cs</span><pre><span></span><code><a id="__codelineno-17-1" name="__codelineno-17-1" href="#__codelineno-17-1"></a><span class="na">[class]</span><span class="p">{</span><span class="n">preorder_find_paths</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">preOrder</span><span class="p">}</span>
<div class="highlight"><span class="filename">preorder_find_paths.cs</span><pre><span></span><code><a id="__codelineno-17-1" name="__codelineno-17-1" href="#__codelineno-17-1"></a><span class="cm">/* 前序遍历 */</span>
<a id="__codelineno-17-2" name="__codelineno-17-2" href="#__codelineno-17-2"></a><span class="k">void</span><span class="w"> </span><span class="nf">preOrder</span><span class="p">(</span><span class="n">TreeNode</span><span class="w"> </span><span class="n">root</span><span class="p">)</span>
<a id="__codelineno-17-3" name="__codelineno-17-3" href="#__codelineno-17-3"></a><span class="p">{</span>
<a id="__codelineno-17-4" name="__codelineno-17-4" href="#__codelineno-17-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">root</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="k">null</span><span class="p">)</span>
<a id="__codelineno-17-5" name="__codelineno-17-5" href="#__codelineno-17-5"></a><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-17-6" name="__codelineno-17-6" href="#__codelineno-17-6"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-17-7" name="__codelineno-17-7" href="#__codelineno-17-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-17-8" name="__codelineno-17-8" href="#__codelineno-17-8"></a><span class="w"> </span><span class="c1">// 尝试</span>
<a id="__codelineno-17-9" name="__codelineno-17-9" href="#__codelineno-17-9"></a><span class="w"> </span><span class="n">path</span><span class="p">.</span><span class="n">Add</span><span class="p">(</span><span class="n">root</span><span class="p">);</span>
<a id="__codelineno-17-10" name="__codelineno-17-10" href="#__codelineno-17-10"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">root</span><span class="p">.</span><span class="n">val</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">7</span><span class="p">)</span>
<a id="__codelineno-17-11" name="__codelineno-17-11" href="#__codelineno-17-11"></a><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-17-12" name="__codelineno-17-12" href="#__codelineno-17-12"></a><span class="w"> </span><span class="c1">// 记录解</span>
<a id="__codelineno-17-13" name="__codelineno-17-13" href="#__codelineno-17-13"></a><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="n">Add</span><span class="p">(</span><span class="k">new</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">TreeNode</span><span class="o">&gt;</span><span class="p">(</span><span class="n">path</span><span class="p">));</span>
<a id="__codelineno-17-14" name="__codelineno-17-14" href="#__codelineno-17-14"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-17-15" name="__codelineno-17-15" href="#__codelineno-17-15"></a><span class="w"> </span><span class="n">preOrder</span><span class="p">(</span><span class="n">root</span><span class="p">.</span><span class="n">left</span><span class="p">);</span>
<a id="__codelineno-17-16" name="__codelineno-17-16" href="#__codelineno-17-16"></a><span class="w"> </span><span class="n">preOrder</span><span class="p">(</span><span class="n">root</span><span class="p">.</span><span class="n">right</span><span class="p">);</span>
<a id="__codelineno-17-17" name="__codelineno-17-17" href="#__codelineno-17-17"></a><span class="w"> </span><span class="c1">// 回退</span>
<a id="__codelineno-17-18" name="__codelineno-17-18" href="#__codelineno-17-18"></a><span class="w"> </span><span class="n">path</span><span class="p">.</span><span class="n">RemoveAt</span><span class="p">(</span><span class="n">path</span><span class="p">.</span><span class="n">Count</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">);</span>
<a id="__codelineno-17-19" name="__codelineno-17-19" href="#__codelineno-17-19"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
@ -2052,7 +2107,7 @@
</div>
</div>
</div>
<h2 id="1212">12.1.2. &nbsp; 剪枝<a class="headerlink" href="#1212" title="Permanent link">&para;</a></h2>
<h2 id="1312">13.1.2. &nbsp; 剪枝<a class="headerlink" href="#1312" title="Permanent link">&para;</a></h2>
<p>复杂的回溯问题通常包含一个或多个约束条件,<strong>约束条件通常可用于“剪枝”</strong></p>
<div class="admonition question">
<p class="admonition-title">例题三:在二叉树中搜索所有值为 <span class="arithmatex">\(7\)</span> 的节点,返回根节点到这些节点的路径,<strong>路径中不能包含值为 <span class="arithmatex">\(3\)</span> 的节点</strong></p>
@ -2134,7 +2189,26 @@
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">preorder_find_constrained_paths.cs</span><pre><span></span><code><a id="__codelineno-27-1" name="__codelineno-27-1" href="#__codelineno-27-1"></a><span class="na">[class]</span><span class="p">{</span><span class="n">preorder_find_constrained_paths</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">preOrder</span><span class="p">}</span>
<div class="highlight"><span class="filename">preorder_find_constrained_paths.cs</span><pre><span></span><code><a id="__codelineno-27-1" name="__codelineno-27-1" href="#__codelineno-27-1"></a><span class="cm">/* 前序遍历 */</span>
<a id="__codelineno-27-2" name="__codelineno-27-2" href="#__codelineno-27-2"></a><span class="k">void</span><span class="w"> </span><span class="nf">preOrder</span><span class="p">(</span><span class="n">TreeNode</span><span class="w"> </span><span class="n">root</span><span class="p">)</span>
<a id="__codelineno-27-3" name="__codelineno-27-3" href="#__codelineno-27-3"></a><span class="p">{</span>
<a id="__codelineno-27-4" name="__codelineno-27-4" href="#__codelineno-27-4"></a><span class="w"> </span><span class="c1">// 剪枝</span>
<a id="__codelineno-27-5" name="__codelineno-27-5" href="#__codelineno-27-5"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">root</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="k">null</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="n">root</span><span class="p">.</span><span class="n">val</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">3</span><span class="p">)</span>
<a id="__codelineno-27-6" name="__codelineno-27-6" href="#__codelineno-27-6"></a><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-27-7" name="__codelineno-27-7" href="#__codelineno-27-7"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-27-8" name="__codelineno-27-8" href="#__codelineno-27-8"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-27-9" name="__codelineno-27-9" href="#__codelineno-27-9"></a><span class="w"> </span><span class="c1">// 尝试</span>
<a id="__codelineno-27-10" name="__codelineno-27-10" href="#__codelineno-27-10"></a><span class="w"> </span><span class="n">path</span><span class="p">.</span><span class="n">Add</span><span class="p">(</span><span class="n">root</span><span class="p">);</span>
<a id="__codelineno-27-11" name="__codelineno-27-11" href="#__codelineno-27-11"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">root</span><span class="p">.</span><span class="n">val</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">7</span><span class="p">)</span>
<a id="__codelineno-27-12" name="__codelineno-27-12" href="#__codelineno-27-12"></a><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-27-13" name="__codelineno-27-13" href="#__codelineno-27-13"></a><span class="w"> </span><span class="c1">// 记录解</span>
<a id="__codelineno-27-14" name="__codelineno-27-14" href="#__codelineno-27-14"></a><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="n">Add</span><span class="p">(</span><span class="k">new</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">TreeNode</span><span class="o">&gt;</span><span class="p">(</span><span class="n">path</span><span class="p">));</span>
<a id="__codelineno-27-15" name="__codelineno-27-15" href="#__codelineno-27-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-27-16" name="__codelineno-27-16" href="#__codelineno-27-16"></a><span class="w"> </span><span class="n">preOrder</span><span class="p">(</span><span class="n">root</span><span class="p">.</span><span class="n">left</span><span class="p">);</span>
<a id="__codelineno-27-17" name="__codelineno-27-17" href="#__codelineno-27-17"></a><span class="w"> </span><span class="n">preOrder</span><span class="p">(</span><span class="n">root</span><span class="p">.</span><span class="n">right</span><span class="p">);</span>
<a id="__codelineno-27-18" name="__codelineno-27-18" href="#__codelineno-27-18"></a><span class="w"> </span><span class="c1">// 回退</span>
<a id="__codelineno-27-19" name="__codelineno-27-19" href="#__codelineno-27-19"></a><span class="w"> </span><span class="n">path</span><span class="p">.</span><span class="n">RemoveAt</span><span class="p">(</span><span class="n">path</span><span class="p">.</span><span class="n">Count</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">);</span>
<a id="__codelineno-27-20" name="__codelineno-27-20" href="#__codelineno-27-20"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
@ -2151,7 +2225,7 @@
<p><img alt="根据约束条件剪枝" src="../backtracking_algorithm.assets/preorder_find_constrained_paths.png" /></p>
<p align="center"> Fig. 根据约束条件剪枝 </p>
<h2 id="1213">12.1.3. &nbsp; 常用术语<a class="headerlink" href="#1213" title="Permanent link">&para;</a></h2>
<h2 id="1313">13.1.3. &nbsp; 常用术语<a class="headerlink" href="#1313" title="Permanent link">&para;</a></h2>
<p>为了更清晰地分析算法问题,我们总结一下回溯算法中常用术语的含义,并对照例题三给出对应示例。</p>
<table>
<thead>
@ -2198,7 +2272,7 @@
<p class="admonition-title">Tip</p>
<p>解、状态、约束条件等术语是通用的,适用于回溯算法、动态规划、贪心算法等。</p>
</div>
<h2 id="1214">12.1.4. &nbsp; 框架代码<a class="headerlink" href="#1214" title="Permanent link">&para;</a></h2>
<h2 id="1314">13.1.4. &nbsp; 框架代码<a class="headerlink" href="#1314" title="Permanent link">&para;</a></h2>
<p>回溯算法可用于解决许多搜索问题、约束满足问题和组合优化问题。为提升代码通用性,我们希望将回溯算法的“尝试、回退、剪枝”的主体框架提炼出来。</p>
<p><code>state</code> 为问题的当前状态,<code>choices</code> 表示当前状态下可以做出的选择,则可得到以下回溯算法的框架代码。</p>
<div class="highlight"><pre><span></span><code><a id="__codelineno-30-1" name="__codelineno-30-1" href="#__codelineno-30-1"></a><span class="k">def</span> <span class="nf">backtrack</span><span class="p">(</span><span class="n">state</span><span class="p">,</span> <span class="n">choices</span><span class="p">,</span> <span class="n">res</span><span class="p">):</span>
@ -2414,17 +2488,61 @@
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">backtrack_find_constrained_paths.cs</span><pre><span></span><code><a id="__codelineno-38-1" name="__codelineno-38-1" href="#__codelineno-38-1"></a><span class="na">[class]</span><span class="p">{</span><span class="n">backtrack_find_constrained_paths</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">isSolution</span><span class="p">}</span>
<a id="__codelineno-38-2" name="__codelineno-38-2" href="#__codelineno-38-2"></a>
<a id="__codelineno-38-3" name="__codelineno-38-3" href="#__codelineno-38-3"></a><span class="na">[class]</span><span class="p">{</span><span class="n">backtrack_find_constrained_paths</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">recordSolution</span><span class="p">}</span>
<a id="__codelineno-38-4" name="__codelineno-38-4" href="#__codelineno-38-4"></a>
<a id="__codelineno-38-5" name="__codelineno-38-5" href="#__codelineno-38-5"></a><span class="na">[class]</span><span class="p">{</span><span class="n">backtrack_find_constrained_paths</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">isValid</span><span class="p">}</span>
<div class="highlight"><span class="filename">backtrack_find_constrained_paths.cs</span><pre><span></span><code><a id="__codelineno-38-1" name="__codelineno-38-1" href="#__codelineno-38-1"></a><span class="cm">/* 判断当前状态是否为解 */</span>
<a id="__codelineno-38-2" name="__codelineno-38-2" href="#__codelineno-38-2"></a><span class="kt">bool</span><span class="w"> </span><span class="nf">isSolution</span><span class="p">(</span><span class="n">List</span><span class="o">&lt;</span><span class="n">TreeNode</span><span class="o">&gt;</span><span class="w"> </span><span class="n">state</span><span class="p">)</span>
<a id="__codelineno-38-3" name="__codelineno-38-3" href="#__codelineno-38-3"></a><span class="p">{</span>
<a id="__codelineno-38-4" name="__codelineno-38-4" href="#__codelineno-38-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">state</span><span class="p">.</span><span class="n">Count</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="m">0</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="n">state</span><span class="p">[</span><span class="o">^</span><span class="m">1</span><span class="p">].</span><span class="n">val</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="m">7</span><span class="p">;</span>
<a id="__codelineno-38-5" name="__codelineno-38-5" href="#__codelineno-38-5"></a><span class="p">}</span>
<a id="__codelineno-38-6" name="__codelineno-38-6" href="#__codelineno-38-6"></a>
<a id="__codelineno-38-7" name="__codelineno-38-7" href="#__codelineno-38-7"></a><span class="na">[class]</span><span class="p">{</span><span class="n">backtrack_find_constrained_paths</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">makeChoice</span><span class="p">}</span>
<a id="__codelineno-38-8" name="__codelineno-38-8" href="#__codelineno-38-8"></a>
<a id="__codelineno-38-9" name="__codelineno-38-9" href="#__codelineno-38-9"></a><span class="na">[class]</span><span class="p">{</span><span class="n">backtrack_find_constrained_paths</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">undoChoice</span><span class="p">}</span>
<a id="__codelineno-38-10" name="__codelineno-38-10" href="#__codelineno-38-10"></a>
<a id="__codelineno-38-11" name="__codelineno-38-11" href="#__codelineno-38-11"></a><span class="na">[class]</span><span class="p">{</span><span class="n">backtrack_find_constrained_paths</span><span class="p">}</span><span class="o">-</span><span class="p">[</span><span class="n">func</span><span class="p">]{</span><span class="n">backtrack</span><span class="p">}</span>
<a id="__codelineno-38-7" name="__codelineno-38-7" href="#__codelineno-38-7"></a><span class="cm">/* 记录解 */</span>
<a id="__codelineno-38-8" name="__codelineno-38-8" href="#__codelineno-38-8"></a><span class="k">void</span><span class="w"> </span><span class="nf">recordSolution</span><span class="p">(</span><span class="n">List</span><span class="o">&lt;</span><span class="n">TreeNode</span><span class="o">&gt;</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">TreeNode</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">res</span><span class="p">)</span>
<a id="__codelineno-38-9" name="__codelineno-38-9" href="#__codelineno-38-9"></a><span class="p">{</span>
<a id="__codelineno-38-10" name="__codelineno-38-10" href="#__codelineno-38-10"></a><span class="w"> </span><span class="n">res</span><span class="p">.</span><span class="n">Add</span><span class="p">(</span><span class="k">new</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">TreeNode</span><span class="o">&gt;</span><span class="p">(</span><span class="n">state</span><span class="p">));</span>
<a id="__codelineno-38-11" name="__codelineno-38-11" href="#__codelineno-38-11"></a><span class="p">}</span>
<a id="__codelineno-38-12" name="__codelineno-38-12" href="#__codelineno-38-12"></a>
<a id="__codelineno-38-13" name="__codelineno-38-13" href="#__codelineno-38-13"></a><span class="cm">/* 判断在当前状态下,该选择是否合法 */</span>
<a id="__codelineno-38-14" name="__codelineno-38-14" href="#__codelineno-38-14"></a><span class="kt">bool</span><span class="w"> </span><span class="nf">isValid</span><span class="p">(</span><span class="n">List</span><span class="o">&lt;</span><span class="n">TreeNode</span><span class="o">&gt;</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">TreeNode</span><span class="w"> </span><span class="n">choice</span><span class="p">)</span>
<a id="__codelineno-38-15" name="__codelineno-38-15" href="#__codelineno-38-15"></a><span class="p">{</span>
<a id="__codelineno-38-16" name="__codelineno-38-16" href="#__codelineno-38-16"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">choice</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="k">null</span><span class="w"> </span><span class="o">&amp;&amp;</span><span class="w"> </span><span class="n">choice</span><span class="p">.</span><span class="n">val</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="m">3</span><span class="p">;</span>
<a id="__codelineno-38-17" name="__codelineno-38-17" href="#__codelineno-38-17"></a><span class="p">}</span>
<a id="__codelineno-38-18" name="__codelineno-38-18" href="#__codelineno-38-18"></a>
<a id="__codelineno-38-19" name="__codelineno-38-19" href="#__codelineno-38-19"></a><span class="cm">/* 更新状态 */</span>
<a id="__codelineno-38-20" name="__codelineno-38-20" href="#__codelineno-38-20"></a><span class="k">void</span><span class="w"> </span><span class="nf">makeChoice</span><span class="p">(</span><span class="n">List</span><span class="o">&lt;</span><span class="n">TreeNode</span><span class="o">&gt;</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">TreeNode</span><span class="w"> </span><span class="n">choice</span><span class="p">)</span>
<a id="__codelineno-38-21" name="__codelineno-38-21" href="#__codelineno-38-21"></a><span class="p">{</span>
<a id="__codelineno-38-22" name="__codelineno-38-22" href="#__codelineno-38-22"></a><span class="w"> </span><span class="n">state</span><span class="p">.</span><span class="n">Add</span><span class="p">(</span><span class="n">choice</span><span class="p">);</span>
<a id="__codelineno-38-23" name="__codelineno-38-23" href="#__codelineno-38-23"></a><span class="p">}</span>
<a id="__codelineno-38-24" name="__codelineno-38-24" href="#__codelineno-38-24"></a>
<a id="__codelineno-38-25" name="__codelineno-38-25" href="#__codelineno-38-25"></a><span class="cm">/* 恢复状态 */</span>
<a id="__codelineno-38-26" name="__codelineno-38-26" href="#__codelineno-38-26"></a><span class="k">void</span><span class="w"> </span><span class="nf">undoChoice</span><span class="p">(</span><span class="n">List</span><span class="o">&lt;</span><span class="n">TreeNode</span><span class="o">&gt;</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">TreeNode</span><span class="w"> </span><span class="n">choice</span><span class="p">)</span>
<a id="__codelineno-38-27" name="__codelineno-38-27" href="#__codelineno-38-27"></a><span class="p">{</span>
<a id="__codelineno-38-28" name="__codelineno-38-28" href="#__codelineno-38-28"></a><span class="w"> </span><span class="n">state</span><span class="p">.</span><span class="n">RemoveAt</span><span class="p">(</span><span class="n">state</span><span class="p">.</span><span class="n">Count</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="m">1</span><span class="p">);</span>
<a id="__codelineno-38-29" name="__codelineno-38-29" href="#__codelineno-38-29"></a><span class="p">}</span>
<a id="__codelineno-38-30" name="__codelineno-38-30" href="#__codelineno-38-30"></a>
<a id="__codelineno-38-31" name="__codelineno-38-31" href="#__codelineno-38-31"></a><span class="cm">/* 回溯算法 */</span>
<a id="__codelineno-38-32" name="__codelineno-38-32" href="#__codelineno-38-32"></a><span class="k">void</span><span class="w"> </span><span class="nf">backtrack</span><span class="p">(</span><span class="n">List</span><span class="o">&lt;</span><span class="n">TreeNode</span><span class="o">&gt;</span><span class="w"> </span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">TreeNode</span><span class="o">&gt;</span><span class="w"> </span><span class="n">choices</span><span class="p">,</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">TreeNode</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">res</span><span class="p">)</span>
<a id="__codelineno-38-33" name="__codelineno-38-33" href="#__codelineno-38-33"></a><span class="p">{</span>
<a id="__codelineno-38-34" name="__codelineno-38-34" href="#__codelineno-38-34"></a><span class="w"> </span><span class="c1">// 检查是否为解</span>
<a id="__codelineno-38-35" name="__codelineno-38-35" href="#__codelineno-38-35"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">isSolution</span><span class="p">(</span><span class="n">state</span><span class="p">))</span>
<a id="__codelineno-38-36" name="__codelineno-38-36" href="#__codelineno-38-36"></a><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-38-37" name="__codelineno-38-37" href="#__codelineno-38-37"></a><span class="w"> </span><span class="c1">// 记录解</span>
<a id="__codelineno-38-38" name="__codelineno-38-38" href="#__codelineno-38-38"></a><span class="w"> </span><span class="n">recordSolution</span><span class="p">(</span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">);</span>
<a id="__codelineno-38-39" name="__codelineno-38-39" href="#__codelineno-38-39"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-38-40" name="__codelineno-38-40" href="#__codelineno-38-40"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-38-41" name="__codelineno-38-41" href="#__codelineno-38-41"></a><span class="w"> </span><span class="c1">// 遍历所有选择</span>
<a id="__codelineno-38-42" name="__codelineno-38-42" href="#__codelineno-38-42"></a><span class="w"> </span><span class="k">foreach</span><span class="w"> </span><span class="p">(</span><span class="n">TreeNode</span><span class="w"> </span><span class="n">choice</span><span class="w"> </span><span class="k">in</span><span class="w"> </span><span class="n">choices</span><span class="p">)</span>
<a id="__codelineno-38-43" name="__codelineno-38-43" href="#__codelineno-38-43"></a><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-38-44" name="__codelineno-38-44" href="#__codelineno-38-44"></a><span class="w"> </span><span class="c1">// 剪枝:检查选择是否合法</span>
<a id="__codelineno-38-45" name="__codelineno-38-45" href="#__codelineno-38-45"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">isValid</span><span class="p">(</span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">choice</span><span class="p">))</span>
<a id="__codelineno-38-46" name="__codelineno-38-46" href="#__codelineno-38-46"></a><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-38-47" name="__codelineno-38-47" href="#__codelineno-38-47"></a><span class="w"> </span><span class="c1">// 尝试:做出选择,更新状态</span>
<a id="__codelineno-38-48" name="__codelineno-38-48" href="#__codelineno-38-48"></a><span class="w"> </span><span class="n">makeChoice</span><span class="p">(</span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">choice</span><span class="p">);</span>
<a id="__codelineno-38-49" name="__codelineno-38-49" href="#__codelineno-38-49"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">TreeNode</span><span class="o">&gt;</span><span class="w"> </span><span class="n">nextChoices</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">TreeNode</span><span class="o">&gt;</span><span class="p">()</span><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="n">choice</span><span class="p">.</span><span class="n">left</span><span class="p">,</span><span class="w"> </span><span class="n">choice</span><span class="p">.</span><span class="n">right</span><span class="w"> </span><span class="p">};</span>
<a id="__codelineno-38-50" name="__codelineno-38-50" href="#__codelineno-38-50"></a><span class="w"> </span><span class="n">backtrack</span><span class="p">(</span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">nextChoices</span><span class="p">,</span><span class="w"> </span><span class="n">res</span><span class="p">);</span>
<a id="__codelineno-38-51" name="__codelineno-38-51" href="#__codelineno-38-51"></a><span class="w"> </span><span class="c1">// 回退:撤销选择,恢复到之前的状态</span>
<a id="__codelineno-38-52" name="__codelineno-38-52" href="#__codelineno-38-52"></a><span class="w"> </span><span class="n">undoChoice</span><span class="p">(</span><span class="n">state</span><span class="p">,</span><span class="w"> </span><span class="n">choice</span><span class="p">);</span>
<a id="__codelineno-38-53" name="__codelineno-38-53" href="#__codelineno-38-53"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-38-54" name="__codelineno-38-54" href="#__codelineno-38-54"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-38-55" name="__codelineno-38-55" href="#__codelineno-38-55"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
@ -2458,7 +2576,7 @@
</div>
</div>
<p>相较于基于前序遍历的实现代码,基于回溯算法框架的实现代码虽然显得啰嗦,但通用性更好,适用于各种不同的回溯算法问题。实际上,<strong>所有回溯问题都可以在该框架下解决</strong>。我们只需要根据问题特点来定义框架中的各个变量,实现各个方法即可。</p>
<h2 id="1215">12.1.5. &nbsp; 典型例题<a class="headerlink" href="#1215" title="Permanent link">&para;</a></h2>
<h2 id="1315">13.1.5. &nbsp; 典型例题<a class="headerlink" href="#1315" title="Permanent link">&para;</a></h2>
<p><strong>搜索问题</strong>:这类问题的目标是找到满足特定条件的解决方案。</p>
<ul>
<li>全排列问题:给定一个集合,求出其所有可能的排列组合。</li>
@ -2555,7 +2673,7 @@
<nav class="md-footer__inner md-grid" aria-label="页脚" >
<a href="../../chapter_sorting/summary/" class="md-footer__link md-footer__link--prev" aria-label="上一页: 11.9. &amp;nbsp; 小结" rel="prev">
<a href="../../chapter_searching/summary/" class="md-footer__link md-footer__link--prev" aria-label="上一页: 12.3. &amp;nbsp; 小结" rel="prev">
<div class="md-footer__button md-icon">
<svg xmlns="http://www.w3.org/2000/svg" viewBox="0 0 24 24"><path d="M20 11v2H8l5.5 5.5-1.42 1.42L4.16 12l7.92-7.92L13.5 5.5 8 11h12Z"/></svg>
</div>
@ -2564,20 +2682,20 @@
上一页
</span>
<div class="md-ellipsis">
11.9. &nbsp; 小结
12.3. &nbsp; 小结
</div>
</div>
</a>
<a href="../../chapter_appendix/installation/" class="md-footer__link md-footer__link--next" aria-label="下一页: 13.1. &amp;nbsp; 编程环境安装" rel="next">
<a href="../../chapter_appendix/installation/" class="md-footer__link md-footer__link--next" aria-label="下一页: 14.1. &amp;nbsp; 编程环境安装" rel="next">
<div class="md-footer__title">
<span class="md-footer__direction">
下一页
</span>
<div class="md-ellipsis">
13.1. &nbsp; 编程环境安装
14.1. &nbsp; 编程环境安装
</div>
</div>
<div class="md-footer__button md-icon">