Bug fixes and improvements (#1472)

* preorder, inorder, postorder -> pre-order, in-order, post-order

* Bug fixes

* Bug fixes

* Update what_is_dsa.md

* Sync zh and zh-hant versions

* Sync zh and zh-hant versions.

* Update performance_evaluation.md and time_complexity.md

* Add @khoaxuantu to the landing page.

* Sync zh and zh-hant versions

* Add @ khoaxuantu to the landing page of zh-hant and en versions.

* Sync zh and zh-hant versions.

* Small improvements

* @issue :  #1450 (#1453)

Fix writing "obsecure" to "obscure"

Co-authored-by: Gaya <kheliligaya@gmail.com>

* Update the definition of "adaptive sorting".

* Update n_queens_problem.md

* Sync zh, zh-hant, and en versions.

---------

Co-authored-by: Gaya-Khelili <50716339+Gaya-Khelili@users.noreply.github.com>
Co-authored-by: Gaya <kheliligaya@gmail.com>
This commit is contained in:
Yudong Jin
2024-07-30 16:56:59 +08:00
committed by GitHub
parent 89a911583d
commit c9041c5c5e
34 changed files with 79 additions and 55 deletions

View File

@ -28,7 +28,11 @@
為了滿足列約束,我們可以利用一個長度為 $n$ 的布林型陣列 `cols` 記錄每一列是否有皇后。在每次決定放置前,我們透過 `cols` 將已有皇后的列進行剪枝,並在回溯中動態更新 `cols` 的狀態。
那麼,如何處理對角線約束呢?設棋盤中某個格子的行列索引為 $(row, col)$ ,選定矩陣中的某條主對角線,我們發現該對角線上所有格子的行索引減列索引都相等,**即對角線上所有格子的 $row - col$ 為恆定值**。
!!! tip
請注意,矩陣的起點位於左上角,其中行索引從上到下增加,列索引從左到右增加。
那麼,如何處理對角線約束呢?設棋盤中某個格子的行列索引為 $(row, col)$ ,選定矩陣中的某條主對角線,我們發現該對角線上所有格子的行索引減列索引都相等,**即主對角線上所有格子的 $row - col$ 為恆定值**。
也就是說,如果兩個格子滿足 $row_1 - col_1 = row_2 - col_2$ ,則它們一定處在同一條主對角線上。利用該規律,我們可以藉助下圖所示的陣列 `diags1` 記錄每條主對角線上是否有皇后。

View File

@ -30,7 +30,7 @@
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 迴圈 n 次
for (int i = 0; i < n; i++) { // 1 ns ,每輪都要執行 i++
for (int i = 0; i < n; i++) { // 1 ns
cout << 0 << endl; // 5 ns
}
}
@ -45,7 +45,7 @@
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 迴圈 n 次
for (int i = 0; i < n; i++) { // 1 ns ,每輪都要執行 i++
for (int i = 0; i < n; i++) { // 1 ns
System.out.println(0); // 5 ns
}
}
@ -60,7 +60,7 @@
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 迴圈 n 次
for (int i = 0; i < n; i++) { // 1 ns ,每輪都要執行 i++
for (int i = 0; i < n; i++) { // 1 ns
Console.WriteLine(0); // 5 ns
}
}
@ -105,7 +105,7 @@
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 迴圈 n 次
for(let i = 0; i < n; i++) { // 1 ns ,每輪都要執行 i++
for(let i = 0; i < n; i++) { // 1 ns
console.log(0); // 5 ns
}
}
@ -120,7 +120,7 @@
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 迴圈 n 次
for(let i = 0; i < n; i++) { // 1 ns ,每輪都要執行 i++
for(let i = 0; i < n; i++) { // 1 ns
console.log(0); // 5 ns
}
}
@ -135,7 +135,7 @@
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 迴圈 n 次
for (int i = 0; i < n; i++) { // 1 ns ,每輪都要執行 i++
for (int i = 0; i < n; i++) { // 1 ns
print(0); // 5 ns
}
}
@ -150,7 +150,7 @@
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 迴圈 n 次
for _ in 0..n { // 1 ns ,每輪都要執行 i++
for _ in 0..n { // 1 ns
println!("{}", 0); // 5 ns
}
}
@ -165,7 +165,7 @@
a = a + 1; // 1 ns
a = a * 2; // 10 ns
// 迴圈 n 次
for (int i = 0; i < n; i++) { // 1 ns ,每輪都要執行 i++
for (int i = 0; i < n; i++) { // 1 ns
printf("%d", 0); // 5 ns
}
}
@ -180,7 +180,7 @@
a = a + 1 // 1 ns
a = a * 2 // 10 ns
// 迴圈 n 次
for (i in 0..<n) { // 1 ns ,每輪都要執行 i++
for (i in 0..<n) { // 1 ns
println(0) // 5 ns
}
}

View File

@ -30,7 +30,7 @@
值得說明的是,將記憶體比作 Excel 表格是一個簡化的類比,實際記憶體的工作機制比較複雜,涉及位址空間、記憶體管理、快取機制、虛擬記憶體和物理記憶體等概念。
記憶體是所有程式的共享資源,當某塊記憶體被某個程式佔用時,則無法被其他程式同時使用了。**因此在資料結構與演算法的設計中,記憶體資源是一個重要的考慮因素**。比如,演算法所佔用的記憶體峰值不應超過系統剩餘空閒記憶體;如果缺少連續大塊的記憶體空間,那麼所選用的資料結構必須能夠儲存在分散的記憶體空間內。
記憶體是所有程式的共享資源,當某塊記憶體被某個程式佔用時,則通常無法被其他程式同時使用了。**因此在資料結構與演算法的設計中,記憶體資源是一個重要的考慮因素**。比如,演算法所佔用的記憶體峰值不應超過系統剩餘空閒記憶體;如果缺少連續大塊的記憶體空間,那麼所選用的資料結構必須能夠儲存在分散的記憶體空間內。
如下圖所示,**物理結構反映了資料在計算機記憶體中的儲存方式**,可分為連續空間儲存(陣列)和分散空間儲存(鏈結串列)。物理結構從底層決定了資料的訪問、更新、增刪等操作方法,兩種物理結構在時間效率和空間效率方面呈現出互補的特點。

View File

@ -2,9 +2,9 @@
本專案旨在建立一本開源、免費、對新手友好的資料結構與演算法入門教程。
- 全書採用動畫圖解,結構化地講解資料結構與演算法知識,內容清晰易懂學習曲線平滑。
- 演算法源程式碼可一鍵執行,支持 Python、C++、Java、C#、Go、Swift、JavaScript、TypeScript、Dart、Rust、C 和 Zig 等語言
- 鼓勵讀者在線上章節評論區互幫互助、共同進步,提問與評論通常可在兩日內得到回覆
- 全書採用動畫圖解,內容清晰易懂學習曲線平滑,引導初學者探索資料結構與演算法的知識地圖
- 源程式碼可一鍵執行,幫助讀者在練習中提升程式設計技能,瞭解演算法工作原理和資料結構底層實現
- 提倡讀者互助學習,歡迎大家在評論區提出問題與分享見解,在交流討論中共同進步
## 讀者物件
@ -32,7 +32,7 @@
本書在開源社群眾多貢獻者的共同努力下不斷完善。感謝每一位投入時間與精力的撰稿人,他們是(按照 GitHub 自動生成的順序krahets、Gonglja、nuomi1、codingonion、Reanon、justin-tse、hpstory、danielsss、curtishd、night-cruise、S-N-O-R-L-A-X、msk397、gvenusleo、RiverTwilight、gyt95、zhuoqinyue、Zuoxun、mingXta、hello-ikun、khoaxuantu、FangYuan33、GN-Yu、longsizhuo、mgisr、Cathay-Chen、guowei-gong、xBLACKICEx、K3v123、IsChristina、JoseHung、qualifier1024、pengchzn、Guanngxu、QiLOL、L-Super、WSL0809、Slone123c、lhxsm、yuan0221、what-is-me、rongyi、JeffersonHuang、longranger2、theNefelibatas、yuelinxin、xiongsp、nanlei、a16su、cy-by-side、gaofer、malone6、Wonderdch、hongyun-robot、XiaChuerwu、yd-j、bluebean-cloud、iron-irax、he-weilai、Nigh、MolDuM、Phoenix0415、XC-Zero、SamJin98、reeswell、NI-SW、Horbin-Magician、xjr7670、YangXuanyi、DullSword、iStig、qq909244296、jiaxianhua、wenjianmin、keshida、kilikilikid、lclc6、lwbaptx、luluxia、boloboloda、hts0000、gledfish、fbigm、echo1937、szu17dmy、dshlstarr、coderlef、czruby、beintentional、KeiichiKasai、xb534、ElaBosak233、baagod、zhouLion、yishangzhang、yi427、yabo083、weibk、wangwang105、th1nk3r-ing、tao363、4yDX3906、syd168、siqyka、selear、sdshaoda、noobcodemaker、chadyi、lyl625760、lucaswangdev、liuxjerry、0130w、shanghai-Jerry、JackYang-hellobobo、Javesun99、lipusheng、ShiMaRing、FreddieLi、FloranceYeh、Transmigration-zhou、fanchenggang、gltianwen、Dr-XYZ、curly210102、CuB3y0nd、youshaoXG、bubble9um、fanenr、52coder、foursevenlove、KorsChen、ZongYangL、hezhizhen、linzeyan、ZJKung、GaochaoZhu、yang-le、Evilrabbit520、Turing-1024-Lee、Suremotoo、Allen-Scai、Richard-Zhang1019、qingpeng9802、primexiao、nidhoggfgg、1ch0、MwumLi、ZnYang2018、hugtyftg、logan-qiu、psychelzh 和 Keynman 。
本書的程式碼審閱工作由 codingonion、curtishd、Gonglja、gvenusleo、hpstory、justin-tse、krahets、night-cruise、nuomi1 和 Reanon 完成(按照首字母順序排列)。感謝他們付出的時間與精力,正是他們確保了各語言程式碼的規範與統一。
本書的程式碼審閱工作由 codingonion、curtishd、Gonglja、gvenusleo、hpstory、justin-tse、khoaxuantu、krahets、night-cruise、nuomi1 和 Reanon 完成(按照首字母順序排列)。感謝他們付出的時間與精力,正是他們確保了各語言程式碼的規範與統一。
在本書的創作過程中,我得到了許多人的幫助。

View File

@ -24,8 +24,7 @@
桶排序適用於處理體量很大的資料。例如,輸入資料包含 100 萬個元素,由於空間限制,系統記憶體無法一次性載入所有資料。此時,可以將資料分成 1000 個桶,然後分別對每個桶進行排序,最後將結果合併。
- **時間複雜度為 $O(n + k)$** :假設元素在各個桶內平均分佈,那麼每個桶內的元素數量為 $\frac{n}{k}$ 。假設排序單個桶使用 $O(\frac{n}{k} \log\frac{n}{k})$ 時間,則排序所有桶使用 $O(n \log\frac{n}{k})$ 時間。**當桶數量 $k$ 比較大時,時間複雜度則趨向於 $O(n)$** 。合併結果時需要走訪所有桶和元素,花費 $O(n + k)$ 時間。
- **自適應排序**:在最差情況下,所有資料被分配到一個桶中,且排序該桶使用 $O(n^2)$ 時間。
- **時間複雜度為 $O(n + k)$** :假設元素在各個桶內平均分佈,那麼每個桶內的元素數量為 $\frac{n}{k}$ 。假設排序單個桶使用 $O(\frac{n}{k} \log\frac{n}{k})$ 時間,則排序所有桶使用 $O(n \log\frac{n}{k})$ 時間。**當桶數量 $k$ 比較大時,時間複雜度則趨向於 $O(n)$** 。合併結果時需要走訪所有桶和元素,花費 $O(n + k)$ 時間。在最差情況下,所有資料被分配到一個桶中,且排序該桶使用 $O(n^2)$ 時間。
- **空間複雜度為 $O(n + k)$、非原地排序**:需要藉助 $k$ 個桶和總共 $n$ 個元素的額外空間。
- 桶排序是否穩定取決於排序桶內元素的演算法是否穩定。

View File

@ -61,7 +61,7 @@
## 演算法特性
- **時間複雜度為 $O(n \log n)$、自適應排序**:在平均情況下,哨兵劃分的遞迴層數為 $\log n$ ,每層中的總迴圈數為 $n$ ,總體使用 $O(n \log n)$ 時間。在最差情況下,每輪哨兵劃分操作都將長度為 $n$ 的陣列劃分為長度為 $0$ 和 $n - 1$ 的兩個子陣列,此時遞迴層數達到 $n$ ,每層中的迴圈數為 $n$ ,總體使用 $O(n^2)$ 時間。
- **時間複雜度為 $O(n \log n)$、自適應排序**:在平均情況下,哨兵劃分的遞迴層數為 $\log n$ ,每層中的總迴圈數為 $n$ ,總體使用 $O(n \log n)$ 時間。在最差情況下,每輪哨兵劃分操作都將長度為 $n$ 的陣列劃分為長度為 $0$ 和 $n - 1$ 的兩個子陣列,此時遞迴層數達到 $n$ ,每層中的迴圈數為 $n$ ,總體使用 $O(n^2)$ 時間。
- **空間複雜度為 $O(n)$、原地排序**:在輸入陣列完全倒序的情況下,達到最差遞迴深度 $n$ ,使用 $O(n)$ 堆疊幀空間。排序操作是在原陣列上進行的,未藉助額外陣列。
- **非穩定排序**:在哨兵劃分的最後一步,基準數可能會被交換至相等元素的右側。

View File

@ -35,14 +35,12 @@
('E', 23)
```
**自適應性**<u>自適應排序</u>的時間複雜度會受輸入資料的影響,即最佳時間複雜度、最差時間複雜度平均時間複雜度並不完全相等
自適應性需要根據具體情況來評估。如果最差時間複雜度差於平均時間複雜度,說明排序演算法在某些資料下效能可能劣化,因此被視為負面屬性;而如果最佳時間複雜度優於平均時間複雜度,則被視為正面屬性。
**自適應性**<u>自適應排序</u>能夠利用輸入資料已有的順序資訊來減少計算量,達到更優的時間效率。自適應排序演算法的最佳時間複雜度通常優於平均時間複雜度。
**是否基於比較**<u>基於比較的排序</u>依賴比較運算子($<$、$=$、$>$)來判斷元素的相對順序,從而排序整個陣列,理論最優時間複雜度為 $O(n \log n)$ 。而<u>非比較排序</u>不使用比較運算子,時間複雜度可達 $O(n)$ ,但其通用性相對較差。
## 理想排序演算法
**執行快、原地、穩定、正向自適應、通用性好**。顯然,迄今為止尚未發現兼具以上所有特性的排序演算法。因此,在選擇排序演算法時,需要根據具體的資料特點和問題需求來決定。
**執行快、原地、穩定、自適應、通用性好**。顯然,迄今為止尚未發現兼具以上所有特性的排序演算法。因此,在選擇排序演算法時,需要根據具體的資料特點和問題需求來決定。
接下來,我們將共同學習各種排序演算法,並基於上述評價維度對各個排序演算法的優缺點進行分析。

Binary file not shown.

Before

Width:  |  Height:  |  Size: 63 KiB

After

Width:  |  Height:  |  Size: 61 KiB

View File

@ -9,7 +9,7 @@
- 桶排序包含三個步驟:資料分桶、桶內排序和合並結果。它同樣體現了分治策略,適用於資料體量很大的情況。桶排序的關鍵在於對資料進行平均分配。
- 計數排序是桶排序的一個特例,它透過統計資料出現的次數來實現排序。計數排序適用於資料量大但資料範圍有限的情況,並且要求資料能夠轉換為正整數。
- 基數排序透過逐位排序來實現資料排序,要求資料能夠表示為固定位數的數字。
- 總的來說,我們希望找到一種排序演算法,具有高效率、穩定、原地以及正向自適應性等優點。然而,正如其他資料結構和演算法一樣,沒有一種排序演算法能夠同時滿足所有這些條件。在實際應用中,我們需要根據資料的特性來選擇合適的排序演算法。
- 總的來說,我們希望找到一種排序演算法,具有高效率、穩定、原地以及自適應性等優點。然而,正如其他資料結構和演算法一樣,沒有一種排序演算法能夠同時滿足所有這些條件。在實際應用中,我們需要根據資料的特性來選擇合適的排序演算法。
- 下圖對比了主流排序演算法的效率、穩定性、就地性和自適應性等。
![排序演算法對比](summary.assets/sorting_algorithms_comparison.png)

View File

@ -286,6 +286,14 @@
<br><sub>Zig, Rust</sub>
</a>
</div>
<div class="profile-cell">
<a href="https://github.com/curtishd">
<img class="profile-img" src="../assets/avatar/avatar_curtishd.jpg"
alt="Reviewer: curtishd" />
<br><b>curtishd</b>
<br><sub>Kotlin</sub>
</a>
</div>
<div class="profile-cell">
<a href="https://github.com/Gonglja">
<img class="profile-img" src="../assets/avatar/avatar_Gonglja.jpg" alt="Reviewer: Gonglja" />