Bug fixes and improvements (#1472)

* preorder, inorder, postorder -> pre-order, in-order, post-order

* Bug fixes

* Bug fixes

* Update what_is_dsa.md

* Sync zh and zh-hant versions

* Sync zh and zh-hant versions.

* Update performance_evaluation.md and time_complexity.md

* Add @khoaxuantu to the landing page.

* Sync zh and zh-hant versions

* Add @ khoaxuantu to the landing page of zh-hant and en versions.

* Sync zh and zh-hant versions.

* Small improvements

* @issue :  #1450 (#1453)

Fix writing "obsecure" to "obscure"

Co-authored-by: Gaya <kheliligaya@gmail.com>

* Update the definition of "adaptive sorting".

* Update n_queens_problem.md

* Sync zh, zh-hant, and en versions.

---------

Co-authored-by: Gaya-Khelili <50716339+Gaya-Khelili@users.noreply.github.com>
Co-authored-by: Gaya <kheliligaya@gmail.com>
This commit is contained in:
Yudong Jin
2024-07-30 16:56:59 +08:00
committed by GitHub
parent 89a911583d
commit c9041c5c5e
34 changed files with 79 additions and 55 deletions

View File

@ -24,8 +24,7 @@
桶排序适用于处理体量很大的数据。例如,输入数据包含 100 万个元素,由于空间限制,系统内存无法一次性加载所有数据。此时,可以将数据分成 1000 个桶,然后分别对每个桶进行排序,最后将结果合并。
- **时间复杂度为 $O(n + k)$** :假设元素在各个桶内平均分布,那么每个桶内的元素数量为 $\frac{n}{k}$ 。假设排序单个桶使用 $O(\frac{n}{k} \log\frac{n}{k})$ 时间,则排序所有桶使用 $O(n \log\frac{n}{k})$ 时间。**当桶数量 $k$ 比较大时,时间复杂度则趋向于 $O(n)$** 。合并结果时需要遍历所有桶和元素,花费 $O(n + k)$ 时间。
- **自适应排序**:在最差情况下,所有数据被分配到一个桶中,且排序该桶使用 $O(n^2)$ 时间。
- **时间复杂度为 $O(n + k)$** :假设元素在各个桶内平均分布,那么每个桶内的元素数量为 $\frac{n}{k}$ 。假设排序单个桶使用 $O(\frac{n}{k} \log\frac{n}{k})$ 时间,则排序所有桶使用 $O(n \log\frac{n}{k})$ 时间。**当桶数量 $k$ 比较大时,时间复杂度则趋向于 $O(n)$** 。合并结果时需要遍历所有桶和元素,花费 $O(n + k)$ 时间。在最差情况下,所有数据被分配到一个桶中,且排序该桶使用 $O(n^2)$ 时间。
- **空间复杂度为 $O(n + k)$、非原地排序**:需要借助 $k$ 个桶和总共 $n$ 个元素的额外空间。
- 桶排序是否稳定取决于排序桶内元素的算法是否稳定。

View File

@ -61,7 +61,7 @@
## 算法特性
- **时间复杂度为 $O(n \log n)$、自适应排序**:在平均情况下,哨兵划分的递归层数为 $\log n$ ,每层中的总循环数为 $n$ ,总体使用 $O(n \log n)$ 时间。在最差情况下,每轮哨兵划分操作都将长度为 $n$ 的数组划分为长度为 $0$ 和 $n - 1$ 的两个子数组,此时递归层数达到 $n$ ,每层中的循环数为 $n$ ,总体使用 $O(n^2)$ 时间。
- **时间复杂度为 $O(n \log n)$、自适应排序**:在平均情况下,哨兵划分的递归层数为 $\log n$ ,每层中的总循环数为 $n$ ,总体使用 $O(n \log n)$ 时间。在最差情况下,每轮哨兵划分操作都将长度为 $n$ 的数组划分为长度为 $0$ 和 $n - 1$ 的两个子数组,此时递归层数达到 $n$ ,每层中的循环数为 $n$ ,总体使用 $O(n^2)$ 时间。
- **空间复杂度为 $O(n)$、原地排序**:在输入数组完全倒序的情况下,达到最差递归深度 $n$ ,使用 $O(n)$ 栈帧空间。排序操作是在原数组上进行的,未借助额外数组。
- **非稳定排序**:在哨兵划分的最后一步,基准数可能会被交换至相等元素的右侧。

View File

@ -35,14 +35,12 @@
('E', 23)
```
**自适应性**<u>自适应排序</u>的时间复杂度会受输入数据的影响,即最佳时间复杂度、最差时间复杂度平均时间复杂度并不完全相等
自适应性需要根据具体情况来评估。如果最差时间复杂度差于平均时间复杂度,说明排序算法在某些数据下性能可能劣化,因此被视为负面属性;而如果最佳时间复杂度优于平均时间复杂度,则被视为正面属性。
**自适应性**<u>自适应排序</u>能够利用输入数据已有的顺序信息来减少计算量,达到更优的时间效率。自适应排序算法的最佳时间复杂度通常优于平均时间复杂度。
**是否基于比较**<u>基于比较的排序</u>依赖比较运算符($<$、$=$、$>$)来判断元素的相对顺序,从而排序整个数组,理论最优时间复杂度为 $O(n \log n)$ 。而<u>非比较排序</u>不使用比较运算符,时间复杂度可达 $O(n)$ ,但其通用性相对较差。
## 理想排序算法
**运行快、原地、稳定、正向自适应、通用性好**。显然,迄今为止尚未发现兼具以上所有特性的排序算法。因此,在选择排序算法时,需要根据具体的数据特点和问题需求来决定。
**运行快、原地、稳定、自适应、通用性好**。显然,迄今为止尚未发现兼具以上所有特性的排序算法。因此,在选择排序算法时,需要根据具体的数据特点和问题需求来决定。
接下来,我们将共同学习各种排序算法,并基于上述评价维度对各个排序算法的优缺点进行分析。

Binary file not shown.

Before

Width:  |  Height:  |  Size: 58 KiB

After

Width:  |  Height:  |  Size: 58 KiB

View File

@ -9,7 +9,7 @@
- 桶排序包含三个步骤:数据分桶、桶内排序和合并结果。它同样体现了分治策略,适用于数据体量很大的情况。桶排序的关键在于对数据进行平均分配。
- 计数排序是桶排序的一个特例,它通过统计数据出现的次数来实现排序。计数排序适用于数据量大但数据范围有限的情况,并且要求数据能够转换为正整数。
- 基数排序通过逐位排序来实现数据排序,要求数据能够表示为固定位数的数字。
- 总的来说,我们希望找到一种排序算法,具有高效率、稳定、原地以及正向自适应性等优点。然而,正如其他数据结构和算法一样,没有一种排序算法能够同时满足所有这些条件。在实际应用中,我们需要根据数据的特性来选择合适的排序算法。
- 总的来说,我们希望找到一种排序算法,具有高效率、稳定、原地以及自适应性等优点。然而,正如其他数据结构和算法一样,没有一种排序算法能够同时满足所有这些条件。在实际应用中,我们需要根据数据的特性来选择合适的排序算法。
- 下图对比了主流排序算法的效率、稳定性、就地性和自适应性等。
![排序算法对比](summary.assets/sorting_algorithms_comparison.png)