Bug fixes and improvements (#1472)

* preorder, inorder, postorder -> pre-order, in-order, post-order

* Bug fixes

* Bug fixes

* Update what_is_dsa.md

* Sync zh and zh-hant versions

* Sync zh and zh-hant versions.

* Update performance_evaluation.md and time_complexity.md

* Add @khoaxuantu to the landing page.

* Sync zh and zh-hant versions

* Add @ khoaxuantu to the landing page of zh-hant and en versions.

* Sync zh and zh-hant versions.

* Small improvements

* @issue :  #1450 (#1453)

Fix writing "obsecure" to "obscure"

Co-authored-by: Gaya <kheliligaya@gmail.com>

* Update the definition of "adaptive sorting".

* Update n_queens_problem.md

* Sync zh, zh-hant, and en versions.

---------

Co-authored-by: Gaya-Khelili <50716339+Gaya-Khelili@users.noreply.github.com>
Co-authored-by: Gaya <kheliligaya@gmail.com>
This commit is contained in:
Yudong Jin
2024-07-30 16:56:59 +08:00
committed by GitHub
parent 89a911583d
commit c9041c5c5e
34 changed files with 79 additions and 55 deletions

View File

@ -28,7 +28,11 @@
为了满足列约束,我们可以利用一个长度为 $n$ 的布尔型数组 `cols` 记录每一列是否有皇后。在每次决定放置前,我们通过 `cols` 将已有皇后的列进行剪枝,并在回溯中动态更新 `cols` 的状态。
那么,如何处理对角线约束呢?设棋盘中某个格子的行列索引为 $(row, col)$ ,选定矩阵中的某条主对角线,我们发现该对角线上所有格子的行索引减列索引都相等,**即对角线上所有格子的 $row - col$ 为恒定值**。
!!! tip
请注意,矩阵的起点位于左上角,其中行索引从上到下增加,列索引从左到右增加。
那么,如何处理对角线约束呢?设棋盘中某个格子的行列索引为 $(row, col)$ ,选定矩阵中的某条主对角线,我们发现该对角线上所有格子的行索引减列索引都相等,**即主对角线上所有格子的 $row - col$ 为恒定值**。
也就是说,如果两个格子满足 $row_1 - col_1 = row_2 - col_2$ ,则它们一定处在同一条主对角线上。利用该规律,我们可以借助下图所示的数组 `diags1` 记录每条主对角线上是否有皇后。