mirror of
https://github.com/krahets/hello-algo.git
synced 2025-07-04 20:31:59 +08:00
Bug fixes and improvements (#1472)
* preorder, inorder, postorder -> pre-order, in-order, post-order * Bug fixes * Bug fixes * Update what_is_dsa.md * Sync zh and zh-hant versions * Sync zh and zh-hant versions. * Update performance_evaluation.md and time_complexity.md * Add @khoaxuantu to the landing page. * Sync zh and zh-hant versions * Add @ khoaxuantu to the landing page of zh-hant and en versions. * Sync zh and zh-hant versions. * Small improvements * @issue : #1450 (#1453) Fix writing "obsecure" to "obscure" Co-authored-by: Gaya <kheliligaya@gmail.com> * Update the definition of "adaptive sorting". * Update n_queens_problem.md * Sync zh, zh-hant, and en versions. --------- Co-authored-by: Gaya-Khelili <50716339+Gaya-Khelili@users.noreply.github.com> Co-authored-by: Gaya <kheliligaya@gmail.com>
This commit is contained in:
@ -28,7 +28,11 @@
|
||||
|
||||
为了满足列约束,我们可以利用一个长度为 $n$ 的布尔型数组 `cols` 记录每一列是否有皇后。在每次决定放置前,我们通过 `cols` 将已有皇后的列进行剪枝,并在回溯中动态更新 `cols` 的状态。
|
||||
|
||||
那么,如何处理对角线约束呢?设棋盘中某个格子的行列索引为 $(row, col)$ ,选定矩阵中的某条主对角线,我们发现该对角线上所有格子的行索引减列索引都相等,**即对角线上所有格子的 $row - col$ 为恒定值**。
|
||||
!!! tip
|
||||
|
||||
请注意,矩阵的起点位于左上角,其中行索引从上到下增加,列索引从左到右增加。
|
||||
|
||||
那么,如何处理对角线约束呢?设棋盘中某个格子的行列索引为 $(row, col)$ ,选定矩阵中的某条主对角线,我们发现该对角线上所有格子的行索引减列索引都相等,**即主对角线上所有格子的 $row - col$ 为恒定值**。
|
||||
|
||||
也就是说,如果两个格子满足 $row_1 - col_1 = row_2 - col_2$ ,则它们一定处在同一条主对角线上。利用该规律,我们可以借助下图所示的数组 `diags1` 记录每条主对角线上是否有皇后。
|
||||
|
||||
|
@ -30,7 +30,7 @@
|
||||
|
||||
值得说明的是,将内存比作 Excel 表格是一个简化的类比,实际内存的工作机制比较复杂,涉及地址空间、内存管理、缓存机制、虚拟内存和物理内存等概念。
|
||||
|
||||
内存是所有程序的共享资源,当某块内存被某个程序占用时,则无法被其他程序同时使用了。**因此在数据结构与算法的设计中,内存资源是一个重要的考虑因素**。比如,算法所占用的内存峰值不应超过系统剩余空闲内存;如果缺少连续大块的内存空间,那么所选用的数据结构必须能够存储在分散的内存空间内。
|
||||
内存是所有程序的共享资源,当某块内存被某个程序占用时,则通常无法被其他程序同时使用了。**因此在数据结构与算法的设计中,内存资源是一个重要的考虑因素**。比如,算法所占用的内存峰值不应超过系统剩余空闲内存;如果缺少连续大块的内存空间,那么所选用的数据结构必须能够存储在分散的内存空间内。
|
||||
|
||||
如下图所示,**物理结构反映了数据在计算机内存中的存储方式**,可分为连续空间存储(数组)和分散空间存储(链表)。物理结构从底层决定了数据的访问、更新、增删等操作方法,两种物理结构在时间效率和空间效率方面呈现出互补的特点。
|
||||
|
||||
|
@ -2,9 +2,9 @@
|
||||
|
||||
本项目旨在创建一本开源、免费、对新手友好的数据结构与算法入门教程。
|
||||
|
||||
- 全书采用动画图解,结构化地讲解数据结构与算法知识,内容清晰易懂,学习曲线平滑。
|
||||
- 算法源代码皆可一键运行,支持 Python、C++、Java、C#、Go、Swift、JavaScript、TypeScript、Dart、Rust、C 和 Zig 等语言。
|
||||
- 鼓励读者在线上章节评论区互帮互助、共同进步,提问与评论通常可在两日内得到回复。
|
||||
- 全书采用动画图解,内容清晰易懂、学习曲线平滑,引导初学者探索数据结构与算法的知识地图。
|
||||
- 源代码可一键运行,帮助读者在练习中提升编程技能,了解算法工作原理和数据结构底层实现。
|
||||
- 提倡读者互助学习,欢迎大家在评论区提出问题与分享见解,在交流讨论中共同进步。
|
||||
|
||||
## 读者对象
|
||||
|
||||
@ -32,7 +32,7 @@
|
||||
|
||||
本书在开源社区众多贡献者的共同努力下不断完善。感谢每一位投入时间与精力的撰稿人,他们是(按照 GitHub 自动生成的顺序):krahets、Gonglja、nuomi1、codingonion、Reanon、justin-tse、hpstory、danielsss、curtishd、night-cruise、S-N-O-R-L-A-X、msk397、gvenusleo、RiverTwilight、gyt95、zhuoqinyue、Zuoxun、mingXta、hello-ikun、khoaxuantu、FangYuan33、GN-Yu、longsizhuo、mgisr、Cathay-Chen、guowei-gong、xBLACKICEx、K3v123、IsChristina、JoseHung、qualifier1024、pengchzn、Guanngxu、QiLOL、L-Super、WSL0809、Slone123c、lhxsm、yuan0221、what-is-me、rongyi、JeffersonHuang、longranger2、theNefelibatas、yuelinxin、xiongsp、nanlei、a16su、cy-by-side、gaofer、malone6、Wonderdch、hongyun-robot、XiaChuerwu、yd-j、bluebean-cloud、iron-irax、he-weilai、Nigh、MolDuM、Phoenix0415、XC-Zero、SamJin98、reeswell、NI-SW、Horbin-Magician、xjr7670、YangXuanyi、DullSword、iStig、qq909244296、jiaxianhua、wenjianmin、keshida、kilikilikid、lclc6、lwbaptx、luluxia、boloboloda、hts0000、gledfish、fbigm、echo1937、szu17dmy、dshlstarr、coderlef、czruby、beintentional、KeiichiKasai、xb534、ElaBosak233、baagod、zhouLion、yishangzhang、yi427、yabo083、weibk、wangwang105、th1nk3r-ing、tao363、4yDX3906、syd168、siqyka、selear、sdshaoda、noobcodemaker、chadyi、lyl625760、lucaswangdev、liuxjerry、0130w、shanghai-Jerry、JackYang-hellobobo、Javesun99、lipusheng、ShiMaRing、FreddieLi、FloranceYeh、Transmigration-zhou、fanchenggang、gltianwen、Dr-XYZ、curly210102、CuB3y0nd、youshaoXG、bubble9um、fanenr、52coder、foursevenlove、KorsChen、ZongYangL、hezhizhen、linzeyan、ZJKung、GaochaoZhu、yang-le、Evilrabbit520、Turing-1024-Lee、Suremotoo、Allen-Scai、Richard-Zhang1019、qingpeng9802、primexiao、nidhoggfgg、1ch0、MwumLi、ZnYang2018、hugtyftg、logan-qiu、psychelzh 和 Keynman 。
|
||||
|
||||
本书的代码审阅工作由 codingonion、curtishd、Gonglja、gvenusleo、hpstory、justin-tse、krahets、night-cruise、nuomi1 和 Reanon 完成(按照首字母顺序排列)。感谢他们付出的时间与精力,正是他们确保了各语言代码的规范与统一。
|
||||
本书的代码审阅工作由 codingonion、curtishd、Gonglja、gvenusleo、hpstory、justin-tse、khoaxuantu、krahets、night-cruise、nuomi1 和 Reanon 完成(按照首字母顺序排列)。感谢他们付出的时间与精力,正是他们确保了各语言代码的规范与统一。
|
||||
|
||||
在本书的创作过程中,我得到了许多人的帮助。
|
||||
|
||||
|
@ -24,8 +24,7 @@
|
||||
|
||||
桶排序适用于处理体量很大的数据。例如,输入数据包含 100 万个元素,由于空间限制,系统内存无法一次性加载所有数据。此时,可以将数据分成 1000 个桶,然后分别对每个桶进行排序,最后将结果合并。
|
||||
|
||||
- **时间复杂度为 $O(n + k)$** :假设元素在各个桶内平均分布,那么每个桶内的元素数量为 $\frac{n}{k}$ 。假设排序单个桶使用 $O(\frac{n}{k} \log\frac{n}{k})$ 时间,则排序所有桶使用 $O(n \log\frac{n}{k})$ 时间。**当桶数量 $k$ 比较大时,时间复杂度则趋向于 $O(n)$** 。合并结果时需要遍历所有桶和元素,花费 $O(n + k)$ 时间。
|
||||
- **自适应排序**:在最差情况下,所有数据被分配到一个桶中,且排序该桶使用 $O(n^2)$ 时间。
|
||||
- **时间复杂度为 $O(n + k)$** :假设元素在各个桶内平均分布,那么每个桶内的元素数量为 $\frac{n}{k}$ 。假设排序单个桶使用 $O(\frac{n}{k} \log\frac{n}{k})$ 时间,则排序所有桶使用 $O(n \log\frac{n}{k})$ 时间。**当桶数量 $k$ 比较大时,时间复杂度则趋向于 $O(n)$** 。合并结果时需要遍历所有桶和元素,花费 $O(n + k)$ 时间。在最差情况下,所有数据被分配到一个桶中,且排序该桶使用 $O(n^2)$ 时间。
|
||||
- **空间复杂度为 $O(n + k)$、非原地排序**:需要借助 $k$ 个桶和总共 $n$ 个元素的额外空间。
|
||||
- 桶排序是否稳定取决于排序桶内元素的算法是否稳定。
|
||||
|
||||
|
@ -61,7 +61,7 @@
|
||||
|
||||
## 算法特性
|
||||
|
||||
- **时间复杂度为 $O(n \log n)$、自适应排序**:在平均情况下,哨兵划分的递归层数为 $\log n$ ,每层中的总循环数为 $n$ ,总体使用 $O(n \log n)$ 时间。在最差情况下,每轮哨兵划分操作都将长度为 $n$ 的数组划分为长度为 $0$ 和 $n - 1$ 的两个子数组,此时递归层数达到 $n$ ,每层中的循环数为 $n$ ,总体使用 $O(n^2)$ 时间。
|
||||
- **时间复杂度为 $O(n \log n)$、非自适应排序**:在平均情况下,哨兵划分的递归层数为 $\log n$ ,每层中的总循环数为 $n$ ,总体使用 $O(n \log n)$ 时间。在最差情况下,每轮哨兵划分操作都将长度为 $n$ 的数组划分为长度为 $0$ 和 $n - 1$ 的两个子数组,此时递归层数达到 $n$ ,每层中的循环数为 $n$ ,总体使用 $O(n^2)$ 时间。
|
||||
- **空间复杂度为 $O(n)$、原地排序**:在输入数组完全倒序的情况下,达到最差递归深度 $n$ ,使用 $O(n)$ 栈帧空间。排序操作是在原数组上进行的,未借助额外数组。
|
||||
- **非稳定排序**:在哨兵划分的最后一步,基准数可能会被交换至相等元素的右侧。
|
||||
|
||||
|
@ -35,14 +35,12 @@
|
||||
('E', 23)
|
||||
```
|
||||
|
||||
**自适应性**:<u>自适应排序</u>的时间复杂度会受输入数据的影响,即最佳时间复杂度、最差时间复杂度、平均时间复杂度并不完全相等。
|
||||
|
||||
自适应性需要根据具体情况来评估。如果最差时间复杂度差于平均时间复杂度,说明排序算法在某些数据下性能可能劣化,因此被视为负面属性;而如果最佳时间复杂度优于平均时间复杂度,则被视为正面属性。
|
||||
**自适应性**:<u>自适应排序</u>能够利用输入数据已有的顺序信息来减少计算量,达到更优的时间效率。自适应排序算法的最佳时间复杂度通常优于平均时间复杂度。
|
||||
|
||||
**是否基于比较**:<u>基于比较的排序</u>依赖比较运算符($<$、$=$、$>$)来判断元素的相对顺序,从而排序整个数组,理论最优时间复杂度为 $O(n \log n)$ 。而<u>非比较排序</u>不使用比较运算符,时间复杂度可达 $O(n)$ ,但其通用性相对较差。
|
||||
|
||||
## 理想排序算法
|
||||
|
||||
**运行快、原地、稳定、正向自适应、通用性好**。显然,迄今为止尚未发现兼具以上所有特性的排序算法。因此,在选择排序算法时,需要根据具体的数据特点和问题需求来决定。
|
||||
**运行快、原地、稳定、自适应、通用性好**。显然,迄今为止尚未发现兼具以上所有特性的排序算法。因此,在选择排序算法时,需要根据具体的数据特点和问题需求来决定。
|
||||
|
||||
接下来,我们将共同学习各种排序算法,并基于上述评价维度对各个排序算法的优缺点进行分析。
|
||||
|
Binary file not shown.
Before Width: | Height: | Size: 58 KiB After Width: | Height: | Size: 58 KiB |
@ -9,7 +9,7 @@
|
||||
- 桶排序包含三个步骤:数据分桶、桶内排序和合并结果。它同样体现了分治策略,适用于数据体量很大的情况。桶排序的关键在于对数据进行平均分配。
|
||||
- 计数排序是桶排序的一个特例,它通过统计数据出现的次数来实现排序。计数排序适用于数据量大但数据范围有限的情况,并且要求数据能够转换为正整数。
|
||||
- 基数排序通过逐位排序来实现数据排序,要求数据能够表示为固定位数的数字。
|
||||
- 总的来说,我们希望找到一种排序算法,具有高效率、稳定、原地以及正向自适应性等优点。然而,正如其他数据结构和算法一样,没有一种排序算法能够同时满足所有这些条件。在实际应用中,我们需要根据数据的特性来选择合适的排序算法。
|
||||
- 总的来说,我们希望找到一种排序算法,具有高效率、稳定、原地以及自适应性等优点。然而,正如其他数据结构和算法一样,没有一种排序算法能够同时满足所有这些条件。在实际应用中,我们需要根据数据的特性来选择合适的排序算法。
|
||||
- 下图对比了主流排序算法的效率、稳定性、就地性和自适应性等。
|
||||
|
||||

|
||||
|
Reference in New Issue
Block a user