Replace ":" with "。"

This commit is contained in:
krahets
2023-08-27 22:49:47 +08:00
parent 71692af8c4
commit c5a7323817
47 changed files with 159 additions and 165 deletions

View File

@ -2,7 +2,7 @@
贪心算法是一种常见的解决优化问题的算法,其基本思想是在问题的每个决策阶段,都选择当前看起来最优的选择,即贪心地做出局部最优的决策,以期望获得全局最优解。贪心算法简洁且高效,在许多实际问题中都有着广泛的应用。
贪心算法和动态规划都常用于解决优化问题。它们一些相似之处,比如都依赖最优子结构性质。两者的不同点在于:
贪心算法和动态规划都常用于解决优化问题。它们之间存在一些相似之处,比如都依赖最优子结构性质,但工作原理是不同的。
- 动态规划会根据之前阶段的所有决策来考虑当前决策,并使用过去子问题的解来构建当前子问题的解。
- 贪心算法不会重新考虑过去的决策,而是一路向前地进行贪心选择,不断缩小问题范围,直至问题被解决。
@ -105,7 +105,7 @@
也就是说,对于零钱兑换问题,贪心算法无法保证找到全局最优解,并且有可能找到非常差的解。它更适合用动态规划解决。
一般情况下,贪心算法适用于以下两类问题
一般情况下,贪心算法适用于以下两类问题
1. **可以保证找到最优解**:贪心算法在这种情况下往往是最优选择,因为它往往比回溯、动态规划更高效。
2. **可以找到近似最优解**:贪心算法在这种情况下也是可用的。对于很多复杂问题来说,寻找全局最优解是非常困难的,能以较高效率找到次优解也是非常不错的。
@ -114,7 +114,7 @@
那么问题来了,什么样的问题适合用贪心算法求解呢?或者说,贪心算法在什么情况下可以保证找到最优解?
相较于动态规划,贪心算法的使用条件更加苛刻,其主要关注问题的两个性质
相较于动态规划,贪心算法的使用条件更加苛刻,其主要关注问题的两个性质
- **贪心选择性质**:只有当局部最优选择始终可以导致全局最优解时,贪心算法才能保证得到最优解。
- **最优子结构**:原问题的最优解包含子问题的最优解。
@ -133,13 +133,13 @@
## 贪心解题步骤
贪心问题的解决流程大体可分为三步
贪心问题的解决流程大体可分为以下三步
1. **问题分析**:梳理与理解问题特性,包括状态定义、优化目标和约束条件等。这一步在回溯和动态规划中都有涉及。
2. **确定贪心策略**:确定如何在每一步中做出贪心选择。这个策略能够在每一步减小问题的规模,并最终能解决整个问题。
3. **正确性证明**:通常需要证明问题具有贪心选择性质和最优子结构。这个步骤可能需要使用到数学证明,例如归纳法或反证法等。
确定贪心策略是求解问题的核心步骤,但实施起来可能并不容易,原因包括:
确定贪心策略是求解问题的核心步骤,但实施起来可能并不容易,主要包含以下原因。
- **不同问题的贪心策略的差异较大**。对于许多问题来说,贪心策略都比较浅显,我们通过一些大概的思考与尝试就能得出。而对于一些复杂问题,贪心策略可能非常隐蔽,这种情况就非常考验个人的解题经验与算法能力了。
- **某些贪心策略具有较强的迷惑性**。当我们满怀信心设计好贪心策略,写出解题代码并提交运行,很可能发现部分测试样例无法通过。这是因为设计的贪心策略只是“部分正确”的,上文介绍的零钱兑换就是个典型案例。
@ -150,7 +150,7 @@
## 贪心典型例题
贪心算法常常应用在满足贪心选择性质和最优子结构的优化问题中,以下一些典型的贪心算法问题
贪心算法常常应用在满足贪心选择性质和最优子结构的优化问题中,以下列举了一些典型的贪心算法问题
1. **硬币找零问题**:在某些硬币组合下,贪心算法总是可以得到最优解。
2. **区间调度问题**:假设你有一些任务,每个任务在一段时间内进行,你的目标是完成尽可能多的任务。如果每次都选择结束时间最早的任务,那么贪心算法就可以得到最优解。