Replace ":" with "。"

This commit is contained in:
krahets
2023-08-27 22:49:47 +08:00
parent 71692af8c4
commit c5a7323817
47 changed files with 159 additions and 165 deletions

View File

@ -1,6 +1,6 @@
# 动态规划解题思路
上两节介绍了动态规划问题的主要特征,接下来我们一起探究两个更加实用的问题
上两节介绍了动态规划问题的主要特征,接下来我们一起探究两个更加实用的问题
1. 如何判断一个问题是不是动态规划问题?
2. 求解动态规划问题该从何处入手,完整步骤是什么?
@ -13,12 +13,12 @@
换句话说,如果问题包含明确的决策概念,并且解是通过一系列决策产生的,那么它就满足决策树模型,通常可以使用回溯来解决。
在此基础上,还有一些动态规划问题的“加分项”,包括:
在此基础上,动态规划问题还有一些判断的“加分项”
- 问题包含最大(小)或最多(少)等最优化描述。
- 问题的状态能够使用一个列表、多维矩阵或树来表示,并且一个状态与其周围的状态存在递推关系。
相应“减分项”包括:
相应地,也存在一些“减分项”
- 问题的目标是找出所有可能的解决方案,而不是找出最优解。
- 问题描述中有明显的排列组合的特征,需要返回具体的多个方案。
@ -91,7 +91,7 @@ $$
### 方法一:暴力搜索
从状态 $[i, j]$ 开始搜索,不断分解为更小的状态 $[i-1, j]$ 和 $[i, j-1]$ ,包括以下递归要素
从状态 $[i, j]$ 开始搜索,不断分解为更小的状态 $[i-1, j]$ 和 $[i, j-1]$ 递归函数包括以下要素
- **递归参数**:状态 $[i, j]$ 。
- **返回值**:从 $[0, 0]$ 到 $[i, j]$ 的最小路径和 $dp[i, j]$ 。