This commit is contained in:
krahets
2023-08-21 19:32:49 +08:00
parent c0f960b443
commit c359c07fe0
67 changed files with 443 additions and 442 deletions

View File

@ -3595,11 +3595,11 @@
<li>在从顶至底堆化的过程中,每个节点最多堆化到叶节点,因此最大迭代次数为二叉树高度 <span class="arithmatex">\(O(\log n)\)</span></li>
</ul>
<p>将上述两者相乘,可得到建堆过程的时间复杂度为 <span class="arithmatex">\(O(n \log n)\)</span><strong>然而,这个估算结果并不准确,因为我们没有考虑到二叉树底层节点数量远多于顶层节点的特性</strong></p>
<p>接下来我们来进行更为详细的计算。为了减小计算难度,我们假设树是一个“完美二叉树”,该假设不会影响计算结果的正确性。设二叉树(即堆)节点数量为 <span class="arithmatex">\(n\)</span> ,树高度为 <span class="arithmatex">\(h\)</span>上文提到,<strong>节点堆化最大迭代次数等于该节点到叶节点的距离,而该距离正是“节点高度”</strong></p>
<p>接下来我们来进行更为详细的计算。为了减小计算难度,我们假设树是一个“完美二叉树”,该假设不会影响计算结果的正确性。设二叉树(即堆)节点数量为 <span class="arithmatex">\(n\)</span> ,树高度为 <span class="arithmatex">\(h\)</span></p>
<p><img alt="完美二叉树的各层节点数量" src="../build_heap.assets/heapify_operations_count.png" /></p>
<p align="center"> 图:完美二叉树的各层节点数量 </p>
<p>因此,我们可以将各层的“节点数量 <span class="arithmatex">\(\times\)</span> 节点高度”求和,<strong>从而得到所有节点的堆化迭代次数的总和</strong></p>
<p>如上图所示,<strong>节点“从顶至底堆化”的最大迭代次数等于该节点到叶节点的距离,而该距离正是“节点高度”</strong>因此,我们可以将各层的“节点数量 <span class="arithmatex">\(\times\)</span> 节点高度”求和,<strong>从而得到所有节点的堆化迭代次数的总和</strong></p>
<div class="arithmatex">\[
T(h) = 2^0h + 2^1(h-1) + 2^2(h-2) + \dots + 2^{(h-1)}\times1
\]</div>