Add summary for the chapters of introduction, hashing, heap, graph, sorting

This commit is contained in:
krahets
2023-02-26 22:47:21 +08:00
parent 1a49631dba
commit c2d641537e
15 changed files with 78 additions and 19 deletions

View File

@@ -36,8 +36,8 @@ $$
## 图常用术语
- 「邻接 Adjacency」当两顶点之间有边相连时称此两顶点“邻接”。
- 「路径 Path」从顶点 A 到顶点 B 走过的边构成的序列,被称为从 A 到 B 的“路径”。
- 「邻接 Adjacency」当两顶点之间有边相连时称此两顶点“邻接”。例如,上图中顶点 1 的邻接顶点为顶点 2, 3, 5 。
- 「路径 Path」从顶点 A 到顶点 B 走过的边构成的序列,被称为从 A 到 B 的“路径”。例如,上图中 1, 5, 2, 4 是顶点 1 到顶点 4 的一个路径。
- 「度 Degree」表示一个顶点具有多少条边。对于有向图「入度 In-Degree」表示有多少条边指向该顶点「出度 Out-Degree」表示有多少条边从该顶点指出。
## 图的表示
@@ -62,13 +62,13 @@ $$
### 邻接表
「邻接表 Adjacency List」使用 $n$ 个链表来表示图,链表结点表示顶点。第 $i$ 条链表对应顶点 $i$ ,其中存储了所有与该顶点相连的顶点。
「邻接表 Adjacency List」使用 $n$ 个链表来表示图,链表结点表示顶点。第 $i$ 条链表对应顶点 $i$ ,其中存储了该顶点的所有邻接顶点(即与该顶点相连的顶点
![图的邻接表表示](graph.assets/adjacency_list.png)
邻接表仅存储存在的边,而边的总数往往远小于 $n^2$ ,因此更加节省空间。但是,因为在邻接表中需要通过遍历链表来查找边,所以其时间效率不如邻接矩阵。
观察上图发现,**邻接表结构与哈希表「链地址法」非常相似,因此我们也可以用类似方法来优化效率**。比如,当链表较长时,可以把链表转化为AVL 树,从而将时间效率从 $O(n)$ 优化至 $O(\log n)$ ,还可以通过中序遍历获取有序序列;还可以将链表转化为 HashSet哈希表,将时间复杂度降低至 $O(1)$ 。
观察上图发现,**邻接表结构与哈希表「链地址法」非常相似,因此我们也可以用类似方法来优化效率**。比如,当链表较长时,可以把链表转化为 AVL 树或红黑树,从而将时间效率从 $O(n)$ 优化至 $O(\log n)$ ,还可以通过中序遍历获取有序序列;还可以将链表转化为哈希表,将时间复杂度降低至 $O(1)$ 。
## 图常见应用