This commit is contained in:
krahets
2023-08-22 13:50:24 +08:00
parent 77b90cd19b
commit b70b7c9e75
67 changed files with 580 additions and 580 deletions

View File

@ -3415,13 +3415,13 @@
<p>常见的数据结构包括数组、链表、栈、队列、哈希表、树、堆、图,它们可以从“逻辑结构”和“物理结构”两个维度进行分类。</p>
<h2 id="311">3.1.1 &nbsp; 逻辑结构:线性与非线性<a class="headerlink" href="#311" title="Permanent link">&para;</a></h2>
<p><strong>逻辑结构揭示了数据元素之间的逻辑关系</strong>。在数组和链表中,数据按照顺序依次排列,体现了数据之间的线性关系;而在树中,数据从顶部向下按层次排列,表现出祖先与后代之间的派生关系;图则由节点和边构成,反映了复杂的网络关系。</p>
<p>图所示,逻辑结构可被分为“线性”和“非线性”两大类。线性结构比较直观,指数据在逻辑关系上呈线性排列;非线性结构则相反,呈非线性排列。</p>
<p>如图 3-1 所示,逻辑结构可被分为“线性”和“非线性”两大类。线性结构比较直观,指数据在逻辑关系上呈线性排列;非线性结构则相反,呈非线性排列。</p>
<ul>
<li><strong>线性数据结构</strong>:数组、链表、栈、队列、哈希表。</li>
<li><strong>非线性数据结构</strong>:树、堆、图、哈希表。</li>
</ul>
<p><img alt="线性与非线性数据结构" src="../classification_of_data_structure.assets/classification_logic_structure.png" /></p>
<p align="center">线性与非线性数据结构 </p>
<p align="center"> 3-1 &nbsp; 线性与非线性数据结构 </p>
<p>非线性数据结构可以进一步被划分为树形结构和网状结构。</p>
<ul>
@ -3431,15 +3431,15 @@
</ul>
<h2 id="312">3.1.2 &nbsp; 物理结构:连续与离散<a class="headerlink" href="#312" title="Permanent link">&para;</a></h2>
<p>在计算机中,内存和硬盘是两种主要的存储硬件设备。硬盘主要用于长期存储数据,容量较大(通常可达到 TB 级别)、速度较慢。内存用于运行程序时暂存数据,速度较快,但容量较小(通常为 GB 级别)。</p>
<p><strong>在算法运行过程中,相关数据都存储在内存中</strong>图展示了一个计算机内存条,其中每个黑色方块都包含一块内存空间。我们可以将内存想象成一个巨大的 Excel 表格,其中每个单元格都可以存储一定大小的数据,在算法运行时,所有数据都被存储在这些单元格中。</p>
<p><strong>系统通过内存地址来访问目标位置的数据</strong>。如图所示,计算机根据特定规则为表格中的每个单元格分配编号,确保每个内存空间都有唯一的内存地址。有了这些地址,程序便可以访问内存中的数据。</p>
<p><strong>在算法运行过程中,相关数据都存储在内存中</strong>。图 3-2 展示了一个计算机内存条,其中每个黑色方块都包含一块内存空间。我们可以将内存想象成一个巨大的 Excel 表格,其中每个单元格都可以存储一定大小的数据,在算法运行时,所有数据都被存储在这些单元格中。</p>
<p><strong>系统通过内存地址来访问目标位置的数据</strong>。如图 3-2 所示,计算机根据特定规则为表格中的每个单元格分配编号,确保每个内存空间都有唯一的内存地址。有了这些地址,程序便可以访问内存中的数据。</p>
<p><img alt="内存条、内存空间、内存地址" src="../classification_of_data_structure.assets/computer_memory_location.png" /></p>
<p align="center">内存条、内存空间、内存地址 </p>
<p align="center"> 3-2 &nbsp; 内存条、内存空间、内存地址 </p>
<p>内存是所有程序的共享资源,当某块内存被某个程序占用时,则无法被其他程序同时使用了。<strong>因此在数据结构与算法的设计中,内存资源是一个重要的考虑因素</strong>。比如,算法所占用的内存峰值不应超过系统剩余空闲内存;如果缺少连续大块的内存空间,那么所选用的数据结构必须能够存储在离散的内存空间内。</p>
<p>图所示,<strong>物理结构反映了数据在计算机内存中的存储方式</strong>,可分为连续空间存储(数组)和离散空间存储(链表)。物理结构从底层决定了数据的访问、更新、增删等操作方法,同时在时间效率和空间效率方面呈现出互补的特点。</p>
<p>如图 3-3 所示,<strong>物理结构反映了数据在计算机内存中的存储方式</strong>,可分为连续空间存储(数组)和离散空间存储(链表)。物理结构从底层决定了数据的访问、更新、增删等操作方法,同时在时间效率和空间效率方面呈现出互补的特点。</p>
<p><img alt="连续空间存储与离散空间存储" src="../classification_of_data_structure.assets/classification_phisical_structure.png" /></p>
<p align="center">连续空间存储与离散空间存储 </p>
<p align="center"> 3-3 &nbsp; 连续空间存储与离散空间存储 </p>
<p>值得说明的是,<strong>所有数据结构都是基于数组、链表或二者的组合实现的</strong>。例如,栈和队列既可以使用数组实现,也可以使用链表实现;而哈希表的实现可能同时包含数组和链表。</p>
<ul>