This commit is contained in:
krahets
2023-08-22 13:50:24 +08:00
parent 77b90cd19b
commit b70b7c9e75
67 changed files with 580 additions and 580 deletions

View File

@ -3539,7 +3539,7 @@
</ul>
<p>在分析一段程序的空间复杂度时,<strong>我们通常统计暂存数据、栈帧空间和输出数据三部分</strong></p>
<p><img alt="算法使用的相关空间" src="../space_complexity.assets/space_types.png" /></p>
<p align="center">算法使用的相关空间 </p>
<p align="center"> 2-9 &nbsp; 算法使用的相关空间 </p>
<div class="tabbed-set tabbed-alternate" data-tabs="1:12"><input checked="checked" id="__tabbed_1_1" name="__tabbed_1" type="radio" /><input id="__tabbed_1_2" name="__tabbed_1" type="radio" /><input id="__tabbed_1_3" name="__tabbed_1" type="radio" /><input id="__tabbed_1_4" name="__tabbed_1" type="radio" /><input id="__tabbed_1_5" name="__tabbed_1" type="radio" /><input id="__tabbed_1_6" name="__tabbed_1" type="radio" /><input id="__tabbed_1_7" name="__tabbed_1" type="radio" /><input id="__tabbed_1_8" name="__tabbed_1" type="radio" /><input id="__tabbed_1_9" name="__tabbed_1" type="radio" /><input id="__tabbed_1_10" name="__tabbed_1" type="radio" /><input id="__tabbed_1_11" name="__tabbed_1" type="radio" /><input id="__tabbed_1_12" name="__tabbed_1" type="radio" /><div class="tabbed-labels"><label for="__tabbed_1_1">Java</label><label for="__tabbed_1_2">C++</label><label for="__tabbed_1_3">Python</label><label for="__tabbed_1_4">Go</label><label for="__tabbed_1_5">JS</label><label for="__tabbed_1_6">TS</label><label for="__tabbed_1_7">C</label><label for="__tabbed_1_8">C#</label><label for="__tabbed_1_9">Swift</label><label for="__tabbed_1_10">Zig</label><label for="__tabbed_1_11">Dart</label><label for="__tabbed_1_12">Rust</label></div>
<div class="tabbed-content">
@ -4107,7 +4107,7 @@
</div>
</div>
<h2 id="233">2.3.3 &nbsp; 常见类型<a class="headerlink" href="#233" title="Permanent link">&para;</a></h2>
<p>设输入数据大小为 <span class="arithmatex">\(n\)</span> 图展示了常见的空间复杂度类型(从低到高排列)。</p>
<p>设输入数据大小为 <span class="arithmatex">\(n\)</span> ,图 2-10 展示了常见的空间复杂度类型(从低到高排列)。</p>
<div class="arithmatex">\[
\begin{aligned}
O(1) &lt; O(\log n) &lt; O(n) &lt; O(n^2) &lt; O(2^n) \newline
@ -4115,7 +4115,7 @@ O(1) &lt; O(\log n) &lt; O(n) &lt; O(n^2) &lt; O(2^n) \newline
\end{aligned}
\]</div>
<p><img alt="常见的空间复杂度类型" src="../space_complexity.assets/space_complexity_common_types.png" /></p>
<p align="center">常见的空间复杂度类型 </p>
<p align="center"> 2-10 &nbsp; 常见的空间复杂度类型 </p>
<div class="admonition tip">
<p class="admonition-title">Tip</p>
@ -4675,7 +4675,7 @@ O(1) &lt; O(\log n) &lt; O(n) &lt; O(n^2) &lt; O(2^n) \newline
</div>
</div>
</div>
<p>图所示,此函数的递归深度为 <span class="arithmatex">\(n\)</span> ,即同时存在 <span class="arithmatex">\(n\)</span> 个未返回的 <code>linear_recur()</code> 函数,使用 <span class="arithmatex">\(O(n)\)</span> 大小的栈帧空间:</p>
<p>如图 2-11 所示,此函数的递归深度为 <span class="arithmatex">\(n\)</span> ,即同时存在 <span class="arithmatex">\(n\)</span> 个未返回的 <code>linear_recur()</code> 函数,使用 <span class="arithmatex">\(O(n)\)</span> 大小的栈帧空间:</p>
<div class="tabbed-set tabbed-alternate" data-tabs="6:12"><input checked="checked" id="__tabbed_6_1" name="__tabbed_6" type="radio" /><input id="__tabbed_6_2" name="__tabbed_6" type="radio" /><input id="__tabbed_6_3" name="__tabbed_6" type="radio" /><input id="__tabbed_6_4" name="__tabbed_6" type="radio" /><input id="__tabbed_6_5" name="__tabbed_6" type="radio" /><input id="__tabbed_6_6" name="__tabbed_6" type="radio" /><input id="__tabbed_6_7" name="__tabbed_6" type="radio" /><input id="__tabbed_6_8" name="__tabbed_6" type="radio" /><input id="__tabbed_6_9" name="__tabbed_6" type="radio" /><input id="__tabbed_6_10" name="__tabbed_6" type="radio" /><input id="__tabbed_6_11" name="__tabbed_6" type="radio" /><input id="__tabbed_6_12" name="__tabbed_6" type="radio" /><div class="tabbed-labels"><label for="__tabbed_6_1">Java</label><label for="__tabbed_6_2">C++</label><label for="__tabbed_6_3">Python</label><label for="__tabbed_6_4">Go</label><label for="__tabbed_6_5">JS</label><label for="__tabbed_6_6">TS</label><label for="__tabbed_6_7">C</label><label for="__tabbed_6_8">C#</label><label for="__tabbed_6_9">Swift</label><label for="__tabbed_6_10">Zig</label><label for="__tabbed_6_11">Dart</label><label for="__tabbed_6_12">Rust</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
@ -4796,7 +4796,7 @@ O(1) &lt; O(\log n) &lt; O(n) &lt; O(n^2) &lt; O(2^n) \newline
</div>
</div>
<p><img alt="递归函数产生的线性阶空间复杂度" src="../space_complexity.assets/space_complexity_recursive_linear.png" /></p>
<p align="center">递归函数产生的线性阶空间复杂度 </p>
<p align="center"> 2-11 &nbsp; 递归函数产生的线性阶空间复杂度 </p>
<h3 id="3-on2">3. &nbsp; 平方阶 <span class="arithmatex">\(O(n^2)\)</span><a class="headerlink" href="#3-on2" title="Permanent link">&para;</a></h3>
<p>平方阶常见于矩阵和图,元素数量与 <span class="arithmatex">\(n\)</span> 成平方关系:</p>
@ -4992,7 +4992,7 @@ O(1) &lt; O(\log n) &lt; O(n) &lt; O(n^2) &lt; O(2^n) \newline
</div>
</div>
</div>
<p>图所示,该函数的递归深度为 <span class="arithmatex">\(n\)</span> ,在每个递归函数中都初始化了一个数组,长度分别为 <span class="arithmatex">\(n, n-1, n-2, ..., 2, 1\)</span> ,平均长度为 <span class="arithmatex">\(n / 2\)</span> ,因此总体占用 <span class="arithmatex">\(O(n^2)\)</span> 空间:</p>
<p>如图 2-12 所示,该函数的递归深度为 <span class="arithmatex">\(n\)</span> ,在每个递归函数中都初始化了一个数组,长度分别为 <span class="arithmatex">\(n, n-1, n-2, ..., 2, 1\)</span> ,平均长度为 <span class="arithmatex">\(n / 2\)</span> ,因此总体占用 <span class="arithmatex">\(O(n^2)\)</span> 空间:</p>
<div class="tabbed-set tabbed-alternate" data-tabs="8:12"><input checked="checked" id="__tabbed_8_1" name="__tabbed_8" type="radio" /><input id="__tabbed_8_2" name="__tabbed_8" type="radio" /><input id="__tabbed_8_3" name="__tabbed_8" type="radio" /><input id="__tabbed_8_4" name="__tabbed_8" type="radio" /><input id="__tabbed_8_5" name="__tabbed_8" type="radio" /><input id="__tabbed_8_6" name="__tabbed_8" type="radio" /><input id="__tabbed_8_7" name="__tabbed_8" type="radio" /><input id="__tabbed_8_8" name="__tabbed_8" type="radio" /><input id="__tabbed_8_9" name="__tabbed_8" type="radio" /><input id="__tabbed_8_10" name="__tabbed_8" type="radio" /><input id="__tabbed_8_11" name="__tabbed_8" type="radio" /><input id="__tabbed_8_12" name="__tabbed_8" type="radio" /><div class="tabbed-labels"><label for="__tabbed_8_1">Java</label><label for="__tabbed_8_2">C++</label><label for="__tabbed_8_3">Python</label><label for="__tabbed_8_4">Go</label><label for="__tabbed_8_5">JS</label><label for="__tabbed_8_6">TS</label><label for="__tabbed_8_7">C</label><label for="__tabbed_8_8">C#</label><label for="__tabbed_8_9">Swift</label><label for="__tabbed_8_10">Zig</label><label for="__tabbed_8_11">Dart</label><label for="__tabbed_8_12">Rust</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
@ -5131,10 +5131,10 @@ O(1) &lt; O(\log n) &lt; O(n) &lt; O(n^2) &lt; O(2^n) \newline
</div>
</div>
<p><img alt="递归函数产生的平方阶空间复杂度" src="../space_complexity.assets/space_complexity_recursive_quadratic.png" /></p>
<p align="center">递归函数产生的平方阶空间复杂度 </p>
<p align="center"> 2-12 &nbsp; 递归函数产生的平方阶空间复杂度 </p>
<h3 id="4-o2n">4. &nbsp; 指数阶 <span class="arithmatex">\(O(2^n)\)</span><a class="headerlink" href="#4-o2n" title="Permanent link">&para;</a></h3>
<p>指数阶常见于二叉树。观察图,高度为 <span class="arithmatex">\(n\)</span> 的“满二叉树”的节点数量为 <span class="arithmatex">\(2^n - 1\)</span> ,占用 <span class="arithmatex">\(O(2^n)\)</span> 空间:</p>
<p>指数阶常见于二叉树。观察图 2-13 ,高度为 <span class="arithmatex">\(n\)</span> 的“满二叉树”的节点数量为 <span class="arithmatex">\(2^n - 1\)</span> ,占用 <span class="arithmatex">\(O(2^n)\)</span> 空间:</p>
<div class="tabbed-set tabbed-alternate" data-tabs="9:12"><input checked="checked" id="__tabbed_9_1" name="__tabbed_9" type="radio" /><input id="__tabbed_9_2" name="__tabbed_9" type="radio" /><input id="__tabbed_9_3" name="__tabbed_9" type="radio" /><input id="__tabbed_9_4" name="__tabbed_9" type="radio" /><input id="__tabbed_9_5" name="__tabbed_9" type="radio" /><input id="__tabbed_9_6" name="__tabbed_9" type="radio" /><input id="__tabbed_9_7" name="__tabbed_9" type="radio" /><input id="__tabbed_9_8" name="__tabbed_9" type="radio" /><input id="__tabbed_9_9" name="__tabbed_9" type="radio" /><input id="__tabbed_9_10" name="__tabbed_9" type="radio" /><input id="__tabbed_9_11" name="__tabbed_9" type="radio" /><input id="__tabbed_9_12" name="__tabbed_9" type="radio" /><div class="tabbed-labels"><label for="__tabbed_9_1">Java</label><label for="__tabbed_9_2">C++</label><label for="__tabbed_9_3">Python</label><label for="__tabbed_9_4">Go</label><label for="__tabbed_9_5">JS</label><label for="__tabbed_9_6">TS</label><label for="__tabbed_9_7">C</label><label for="__tabbed_9_8">C#</label><label for="__tabbed_9_9">Swift</label><label for="__tabbed_9_10">Zig</label><label for="__tabbed_9_11">Dart</label><label for="__tabbed_9_12">Rust</label></div>
<div class="tabbed-content">
<div class="tabbed-block">
@ -5280,7 +5280,7 @@ O(1) &lt; O(\log n) &lt; O(n) &lt; O(n^2) &lt; O(2^n) \newline
</div>
</div>
<p><img alt="满二叉树产生的指数阶空间复杂度" src="../space_complexity.assets/space_complexity_exponential.png" /></p>
<p align="center">满二叉树产生的指数阶空间复杂度 </p>
<p align="center"> 2-13 &nbsp; 满二叉树产生的指数阶空间复杂度 </p>
<h3 id="5-olog-n">5. &nbsp; 对数阶 <span class="arithmatex">\(O(\log n)\)</span><a class="headerlink" href="#5-olog-n" title="Permanent link">&para;</a></h3>
<p>对数阶常见于分治算法。例如归并排序,输入长度为 <span class="arithmatex">\(n\)</span> 的数组,每轮递归将数组从中点划分为两半,形成高度为 <span class="arithmatex">\(\log n\)</span> 的递归树,使用 <span class="arithmatex">\(O(\log n)\)</span> 栈帧空间。</p>