Move docs/zh back to docs.

Move docs/overrides to overrides/.
Other fine tunes.
This commit is contained in:
krahets
2023-10-08 04:25:06 +08:00
parent f62256bee1
commit b39c2a94d3
615 changed files with 3 additions and 3 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 59 KiB

View File

@ -0,0 +1,142 @@
# 建堆操作
在某些情况下,我们希望使用一个列表的所有元素来构建一个堆,这个过程被称为“建堆操作”。
## 借助入堆操作实现
我们首先创建一个空堆,然后遍历列表,依次对每个元素执行“入堆操作”,即先将元素添加至堆的尾部,再对该元素执行“从底至顶”堆化。
每当一个元素入堆,堆的长度就加一。由于节点是从顶到底依次被添加进二叉树的,因此堆是“自上而下”地构建的。
设元素数量为 $n$ ,每个元素的入堆操作使用 $O(\log{n})$ 时间,因此该建堆方法的时间复杂度为 $O(n \log n)$ 。
## 通过遍历堆化实现
实际上,我们可以实现一种更为高效的建堆方法,共分为两步。
1. 将列表所有元素原封不动添加到堆中,此时堆的性质尚未得到满足。
2. 倒序遍历堆(即层序遍历的倒序),依次对每个非叶节点执行“从顶至底堆化”。
**每当堆化一个节点后,以该节点为根节点的子树就形成一个合法的子堆**。而由于是倒序遍历,因此堆是“自下而上”地被构建的。
之所以选择倒序遍历,是因为这样能够保证当前节点之下的子树已经是合法的子堆,这样堆化当前节点才是有效的。
值得说明的是,**叶节点没有子节点,天然就是合法的子堆,因此无需堆化**。如以下代码所示,最后一个非叶节点是最后一个节点的父节点,我们从它开始倒序遍历并执行堆化。
=== "Python"
```python title="my_heap.py"
[class]{MaxHeap}-[func]{__init__}
```
=== "C++"
```cpp title="my_heap.cpp"
[class]{MaxHeap}-[func]{MaxHeap}
```
=== "Java"
```java title="my_heap.java"
[class]{MaxHeap}-[func]{MaxHeap}
```
=== "C#"
```csharp title="my_heap.cs"
[class]{MaxHeap}-[func]{MaxHeap}
```
=== "Go"
```go title="my_heap.go"
[class]{maxHeap}-[func]{newMaxHeap}
```
=== "Swift"
```swift title="my_heap.swift"
[class]{MaxHeap}-[func]{init}
```
=== "JS"
```javascript title="my_heap.js"
[class]{MaxHeap}-[func]{constructor}
```
=== "TS"
```typescript title="my_heap.ts"
[class]{MaxHeap}-[func]{constructor}
```
=== "Dart"
```dart title="my_heap.dart"
[class]{MaxHeap}-[func]{MaxHeap}
```
=== "Rust"
```rust title="my_heap.rs"
[class]{MaxHeap}-[func]{new}
```
=== "C"
```c title="my_heap.c"
[class]{maxHeap}-[func]{newMaxHeap}
```
=== "Zig"
```zig title="my_heap.zig"
[class]{MaxHeap}-[func]{init}
```
## 复杂度分析
下面,我们来尝试推算第二种建堆方法的时间复杂度。
- 假设完全二叉树的节点数量为 $n$ ,则叶节点数量为 $(n + 1) / 2$ ,其中 $/$ 为向下整除。因此需要堆化的节点数量为 $(n - 1) / 2$ 。
- 在从顶至底堆化的过程中,每个节点最多堆化到叶节点,因此最大迭代次数为二叉树高度 $\log n$ 。
将上述两者相乘,可得到建堆过程的时间复杂度为 $O(n \log n)$ 。**但这个估算结果并不准确,因为我们没有考虑到二叉树底层节点数量远多于顶层节点的性质**。
接下来我们来进行更为准确的计算。为了减小计算难度,假设给定一个节点数量为 $n$ ,高度为 $h$ 的“完美二叉树”,该假设不会影响计算结果的正确性。
![完美二叉树的各层节点数量](build_heap.assets/heapify_operations_count.png)
如上图所示,节点“从顶至底堆化”的最大迭代次数等于该节点到叶节点的距离,而该距离正是“节点高度”。因此,我们可以将各层的“节点数量 $\times$ 节点高度”求和,**从而得到所有节点的堆化迭代次数的总和**。
$$
T(h) = 2^0h + 2^1(h-1) + 2^2(h-2) + \dots + 2^{(h-1)}\times1
$$
化简上式需要借助中学的数列知识,先对 $T(h)$ 乘以 $2$ ,得到:
$$
\begin{aligned}
T(h) & = 2^0h + 2^1(h-1) + 2^2(h-2) + \dots + 2^{h-1}\times1 \newline
2 T(h) & = 2^1h + 2^2(h-1) + 2^3(h-2) + \dots + 2^{h}\times1 \newline
\end{aligned}
$$
使用错位相减法,用下式 $2 T(h)$ 减去上式 $T(h)$ ,可得:
$$
2T(h) - T(h) = T(h) = -2^0h + 2^1 + 2^2 + \dots + 2^{h-1} + 2^h
$$
观察上式,发现 $T(h)$ 是一个等比数列,可直接使用求和公式,得到时间复杂度为:
$$
\begin{aligned}
T(h) & = 2 \frac{1 - 2^h}{1 - 2} - h \newline
& = 2^{h+1} - h - 2 \newline
& = O(2^h)
\end{aligned}
$$
进一步地,高度为 $h$ 的完美二叉树的节点数量为 $n = 2^{h+1} - 1$ ,易得复杂度为 $O(2^h) = O(n)$ 。以上推算表明,**输入列表并建堆的时间复杂度为 $O(n)$ ,非常高效**。

Binary file not shown.

After

Width:  |  Height:  |  Size: 70 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 80 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 67 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 66 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 84 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 88 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 90 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 94 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 95 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 98 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 63 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 64 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 78 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 83 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 81 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 85 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 82 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 84 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 76 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 107 KiB

833
docs/chapter_heap/heap.md Normal file
View File

@ -0,0 +1,833 @@
# 堆
「堆 heap」是一种满足特定条件的完全二叉树主要可分为下图所示的两种类型。
- 「大顶堆 max heap」任意节点的值 $\geq$ 其子节点的值。
- 「小顶堆 min heap」任意节点的值 $\leq$ 其子节点的值。
![小顶堆与大顶堆](heap.assets/min_heap_and_max_heap.png)
堆作为完全二叉树的一个特例,具有以下特性。
- 最底层节点靠左填充,其他层的节点都被填满。
- 我们将二叉树的根节点称为“堆顶”,将底层最靠右的节点称为“堆底”。
- 对于大顶堆(小顶堆),堆顶元素(即根节点)的值分别是最大(最小)的。
## 堆常用操作
需要指出的是,许多编程语言提供的是「优先队列 priority queue」这是一种抽象数据结构定义为具有优先级排序的队列。
实际上,**堆通常用作实现优先队列,大顶堆相当于元素按从大到小顺序出队的优先队列**。从使用角度来看,我们可以将“优先队列”和“堆”看作等价的数据结构。因此,本书对两者不做特别区分,统一使用“堆“来命名。
堆的常用操作见下表,方法名需要根据编程语言来确定。
<p align="center"><id> &nbsp; 堆的操作效率 </p>
| 方法名 | 描述 | 时间复杂度 |
| --------- | ------------------------------------------ | ----------- |
| push() | 元素入堆 | $O(\log n)$ |
| pop() | 堆顶元素出堆 | $O(\log n)$ |
| peek() | 访问堆顶元素(大 / 小顶堆分别为最大 / 小值) | $O(1)$ |
| size() | 获取堆的元素数量 | $O(1)$ |
| isEmpty() | 判断堆是否为空 | $O(1)$ |
在实际应用中,我们可以直接使用编程语言提供的堆类(或优先队列类)。
!!! tip
类似于排序算法中的“从小到大排列”和“从大到小排列”,我们可以通过修改 Comparator 来实现“小顶堆”与“大顶堆”之间的转换。
=== "Python"
```python title="heap.py"
# 初始化小顶堆
min_heap, flag = [], 1
# 初始化大顶堆
max_heap, flag = [], -1
# Python 的 heapq 模块默认实现小顶堆
# 考虑将“元素取负”后再入堆,这样就可以将大小关系颠倒,从而实现大顶堆
# 在本示例中flag = 1 时对应小顶堆flag = -1 时对应大顶堆
# 元素入堆
heapq.heappush(max_heap, flag * 1)
heapq.heappush(max_heap, flag * 3)
heapq.heappush(max_heap, flag * 2)
heapq.heappush(max_heap, flag * 5)
heapq.heappush(max_heap, flag * 4)
# 获取堆顶元素
peek: int = flag * max_heap[0] # 5
# 堆顶元素出堆
# 出堆元素会形成一个从大到小的序列
val = flag * heapq.heappop(max_heap) # 5
val = flag * heapq.heappop(max_heap) # 4
val = flag * heapq.heappop(max_heap) # 3
val = flag * heapq.heappop(max_heap) # 2
val = flag * heapq.heappop(max_heap) # 1
# 获取堆大小
size: int = len(max_heap)
# 判断堆是否为空
is_empty: bool = not max_heap
# 输入列表并建堆
min_heap: list[int] = [1, 3, 2, 5, 4]
heapq.heapify(min_heap)
```
=== "C++"
```cpp title="heap.cpp"
/* 初始化堆 */
// 初始化小顶堆
priority_queue<int, vector<int>, greater<int>> minHeap;
// 初始化大顶堆
priority_queue<int, vector<int>, less<int>> maxHeap;
/* 元素入堆 */
maxHeap.push(1);
maxHeap.push(3);
maxHeap.push(2);
maxHeap.push(5);
maxHeap.push(4);
/* 获取堆顶元素 */
int peek = maxHeap.top(); // 5
/* 堆顶元素出堆 */
// 出堆元素会形成一个从大到小的序列
maxHeap.pop(); // 5
maxHeap.pop(); // 4
maxHeap.pop(); // 3
maxHeap.pop(); // 2
maxHeap.pop(); // 1
/* 获取堆大小 */
int size = maxHeap.size();
/* 判断堆是否为空 */
bool isEmpty = maxHeap.empty();
/* 输入列表并建堆 */
vector<int> input{1, 3, 2, 5, 4};
priority_queue<int, vector<int>, greater<int>> minHeap(input.begin(), input.end());
```
=== "Java"
```java title="heap.java"
/* 初始化堆 */
// 初始化小顶堆
Queue<Integer> minHeap = new PriorityQueue<>();
// 初始化大顶堆(使用 lambda 表达式修改 Comparator 即可)
Queue<Integer> maxHeap = new PriorityQueue<>((a, b) -> b - a);
/* 元素入堆 */
maxHeap.offer(1);
maxHeap.offer(3);
maxHeap.offer(2);
maxHeap.offer(5);
maxHeap.offer(4);
/* 获取堆顶元素 */
int peek = maxHeap.peek(); // 5
/* 堆顶元素出堆 */
// 出堆元素会形成一个从大到小的序列
peek = maxHeap.poll(); // 5
peek = maxHeap.poll(); // 4
peek = maxHeap.poll(); // 3
peek = maxHeap.poll(); // 2
peek = maxHeap.poll(); // 1
/* 获取堆大小 */
int size = maxHeap.size();
/* 判断堆是否为空 */
boolean isEmpty = maxHeap.isEmpty();
/* 输入列表并建堆 */
minHeap = new PriorityQueue<>(Arrays.asList(1, 3, 2, 5, 4));
```
=== "C#"
```csharp title="heap.cs"
/* 初始化堆 */
// 初始化小顶堆
PriorityQueue<int, int> minHeap = new();
// 初始化大顶堆(使用 lambda 表达式修改 Comparator 即可)
PriorityQueue<int, int> maxHeap = new(Comparer<int>.Create((x, y) => y - x));
/* 元素入堆 */
maxHeap.Enqueue(1, 1);
maxHeap.Enqueue(3, 3);
maxHeap.Enqueue(2, 2);
maxHeap.Enqueue(5, 5);
maxHeap.Enqueue(4, 4);
/* 获取堆顶元素 */
int peek = maxHeap.Peek();//5
/* 堆顶元素出堆 */
// 出堆元素会形成一个从大到小的序列
peek = maxHeap.Dequeue(); // 5
peek = maxHeap.Dequeue(); // 4
peek = maxHeap.Dequeue(); // 3
peek = maxHeap.Dequeue(); // 2
peek = maxHeap.Dequeue(); // 1
/* 获取堆大小 */
int size = maxHeap.Count;
/* 判断堆是否为空 */
bool isEmpty = maxHeap.Count == 0;
/* 输入列表并建堆 */
minHeap = new PriorityQueue<int, int>(new List<(int, int)> { (1, 1), (3, 3), (2, 2), (5, 5), (4, 4), });
```
=== "Go"
```go title="heap.go"
// Go 语言中可以通过实现 heap.Interface 来构建整数大顶堆
// 实现 heap.Interface 需要同时实现 sort.Interface
type intHeap []any
// Push heap.Interface 的方法,实现推入元素到堆
func (h *intHeap) Push(x any) {
// Push 和 Pop 使用 pointer receiver 作为参数
// 因为它们不仅会对切片的内容进行调整,还会修改切片的长度。
*h = append(*h, x.(int))
}
// Pop heap.Interface 的方法,实现弹出堆顶元素
func (h *intHeap) Pop() any {
// 待出堆元素存放在最后
last := (*h)[len(*h)-1]
*h = (*h)[:len(*h)-1]
return last
}
// Len sort.Interface 的方法
func (h *intHeap) Len() int {
return len(*h)
}
// Less sort.Interface 的方法
func (h *intHeap) Less(i, j int) bool {
// 如果实现小顶堆,则需要调整为小于号
return (*h)[i].(int) > (*h)[j].(int)
}
// Swap sort.Interface 的方法
func (h *intHeap) Swap(i, j int) {
(*h)[i], (*h)[j] = (*h)[j], (*h)[i]
}
// Top 获取堆顶元素
func (h *intHeap) Top() any {
return (*h)[0]
}
/* Driver Code */
func TestHeap(t *testing.T) {
/* 初始化堆 */
// 初始化大顶堆
maxHeap := &intHeap{}
heap.Init(maxHeap)
/* 元素入堆 */
// 调用 heap.Interface 的方法,来添加元素
heap.Push(maxHeap, 1)
heap.Push(maxHeap, 3)
heap.Push(maxHeap, 2)
heap.Push(maxHeap, 4)
heap.Push(maxHeap, 5)
/* 获取堆顶元素 */
top := maxHeap.Top()
fmt.Printf("堆顶元素为 %d\n", top)
/* 堆顶元素出堆 */
// 调用 heap.Interface 的方法,来移除元素
heap.Pop(maxHeap) // 5
heap.Pop(maxHeap) // 4
heap.Pop(maxHeap) // 3
heap.Pop(maxHeap) // 2
heap.Pop(maxHeap) // 1
/* 获取堆大小 */
size := len(*maxHeap)
fmt.Printf("堆元素数量为 %d\n", size)
/* 判断堆是否为空 */
isEmpty := len(*maxHeap) == 0
fmt.Printf("堆是否为空 %t\n", isEmpty)
}
```
=== "Swift"
```swift title="heap.swift"
// Swift 未提供内置 Heap 类
```
=== "JS"
```javascript title="heap.js"
// JavaScript 未提供内置 Heap 类
```
=== "TS"
```typescript title="heap.ts"
// TypeScript 未提供内置 Heap 类
```
=== "Dart"
```dart title="heap.dart"
// Dart 未提供内置 Heap 类
```
=== "Rust"
```rust title="heap.rs"
use std::collections::BinaryHeap;
use std::cmp::Reverse;
/* 初始化堆 */
// 初始化小顶堆
let mut min_heap = BinaryHeap::<Reverse<i32>>::new();
// 初始化大顶堆
let mut max_heap = BinaryHeap::new();
/* 元素入堆 */
max_heap.push(1);
max_heap.push(3);
max_heap.push(2);
max_heap.push(5);
max_heap.push(4);
/* 获取堆顶元素 */
let peek = max_heap.peek().unwrap(); // 5
/* 堆顶元素出堆 */
// 出堆元素会形成一个从大到小的序列
let peek = max_heap.pop().unwrap(); // 5
let peek = max_heap.pop().unwrap(); // 4
let peek = max_heap.pop().unwrap(); // 3
let peek = max_heap.pop().unwrap(); // 2
let peek = max_heap.pop().unwrap(); // 1
/* 获取堆大小 */
let size = max_heap.len();
/* 判断堆是否为空 */
let is_empty = max_heap.is_empty();
/* 输入列表并建堆 */
let min_heap = BinaryHeap::from(vec![Reverse(1), Reverse(3), Reverse(2), Reverse(5), Reverse(4)]);
```
=== "C"
```c title="heap.c"
// C 未提供内置 Heap 类
```
=== "Zig"
```zig title="heap.zig"
```
## 堆的实现
下文实现的是大顶堆。若要将其转换为小顶堆,只需将所有大小逻辑判断取逆(例如,将 $\geq$ 替换为 $\leq$ )。感兴趣的读者可以自行实现。
### 堆的存储与表示
我们在二叉树章节中学习到,完全二叉树非常适合用数组来表示。由于堆正是一种完全二叉树,**我们将采用数组来存储堆**。
当使用数组表示二叉树时,元素代表节点值,索引代表节点在二叉树中的位置。**节点指针通过索引映射公式来实现**。
如下图所示,给定索引 $i$ ,其左子节点索引为 $2i + 1$ ,右子节点索引为 $2i + 2$ ,父节点索引为 $(i - 1) / 2$(向下取整)。当索引越界时,表示空节点或节点不存在。
![堆的表示与存储](heap.assets/representation_of_heap.png)
我们可以将索引映射公式封装成函数,方便后续使用。
=== "Python"
```python title="my_heap.py"
[class]{MaxHeap}-[func]{left}
[class]{MaxHeap}-[func]{right}
[class]{MaxHeap}-[func]{parent}
```
=== "C++"
```cpp title="my_heap.cpp"
[class]{MaxHeap}-[func]{left}
[class]{MaxHeap}-[func]{right}
[class]{MaxHeap}-[func]{parent}
```
=== "Java"
```java title="my_heap.java"
[class]{MaxHeap}-[func]{left}
[class]{MaxHeap}-[func]{right}
[class]{MaxHeap}-[func]{parent}
```
=== "C#"
```csharp title="my_heap.cs"
[class]{MaxHeap}-[func]{Left}
[class]{MaxHeap}-[func]{Right}
[class]{MaxHeap}-[func]{Parent}
```
=== "Go"
```go title="my_heap.go"
[class]{maxHeap}-[func]{left}
[class]{maxHeap}-[func]{right}
[class]{maxHeap}-[func]{parent}
```
=== "Swift"
```swift title="my_heap.swift"
[class]{MaxHeap}-[func]{left}
[class]{MaxHeap}-[func]{right}
[class]{MaxHeap}-[func]{parent}
```
=== "JS"
```javascript title="my_heap.js"
[class]{MaxHeap}-[func]{#left}
[class]{MaxHeap}-[func]{#right}
[class]{MaxHeap}-[func]{#parent}
```
=== "TS"
```typescript title="my_heap.ts"
[class]{MaxHeap}-[func]{left}
[class]{MaxHeap}-[func]{right}
[class]{MaxHeap}-[func]{parent}
```
=== "Dart"
```dart title="my_heap.dart"
[class]{MaxHeap}-[func]{_left}
[class]{MaxHeap}-[func]{_right}
[class]{MaxHeap}-[func]{_parent}
```
=== "Rust"
```rust title="my_heap.rs"
[class]{MaxHeap}-[func]{left}
[class]{MaxHeap}-[func]{right}
[class]{MaxHeap}-[func]{parent}
```
=== "C"
```c title="my_heap.c"
[class]{maxHeap}-[func]{left}
[class]{maxHeap}-[func]{right}
[class]{maxHeap}-[func]{parent}
```
=== "Zig"
```zig title="my_heap.zig"
[class]{MaxHeap}-[func]{left}
[class]{MaxHeap}-[func]{right}
[class]{MaxHeap}-[func]{parent}
```
### 访问堆顶元素
堆顶元素即为二叉树的根节点,也就是列表的首个元素。
=== "Python"
```python title="my_heap.py"
[class]{MaxHeap}-[func]{peek}
```
=== "C++"
```cpp title="my_heap.cpp"
[class]{MaxHeap}-[func]{peek}
```
=== "Java"
```java title="my_heap.java"
[class]{MaxHeap}-[func]{peek}
```
=== "C#"
```csharp title="my_heap.cs"
[class]{MaxHeap}-[func]{Peek}
```
=== "Go"
```go title="my_heap.go"
[class]{maxHeap}-[func]{peek}
```
=== "Swift"
```swift title="my_heap.swift"
[class]{MaxHeap}-[func]{peek}
```
=== "JS"
```javascript title="my_heap.js"
[class]{MaxHeap}-[func]{peek}
```
=== "TS"
```typescript title="my_heap.ts"
[class]{MaxHeap}-[func]{peek}
```
=== "Dart"
```dart title="my_heap.dart"
[class]{MaxHeap}-[func]{peek}
```
=== "Rust"
```rust title="my_heap.rs"
[class]{MaxHeap}-[func]{peek}
```
=== "C"
```c title="my_heap.c"
[class]{maxHeap}-[func]{peek}
```
=== "Zig"
```zig title="my_heap.zig"
[class]{MaxHeap}-[func]{peek}
```
### 元素入堆
给定元素 `val` ,我们首先将其添加到堆底。添加之后,由于 val 可能大于堆中其他元素,堆的成立条件可能已被破坏。因此,**需要修复从插入节点到根节点的路径上的各个节点**,这个操作被称为「堆化 heapify」。
考虑从入堆节点开始,**从底至顶执行堆化**。如下图所示,我们比较插入节点与其父节点的值,如果插入节点更大,则将它们交换。然后继续执行此操作,从底至顶修复堆中的各个节点,直至越过根节点或遇到无须交换的节点时结束。
=== "<1>"
![元素入堆步骤](heap.assets/heap_push_step1.png)
=== "<2>"
![heap_push_step2](heap.assets/heap_push_step2.png)
=== "<3>"
![heap_push_step3](heap.assets/heap_push_step3.png)
=== "<4>"
![heap_push_step4](heap.assets/heap_push_step4.png)
=== "<5>"
![heap_push_step5](heap.assets/heap_push_step5.png)
=== "<6>"
![heap_push_step6](heap.assets/heap_push_step6.png)
=== "<7>"
![heap_push_step7](heap.assets/heap_push_step7.png)
=== "<8>"
![heap_push_step8](heap.assets/heap_push_step8.png)
=== "<9>"
![heap_push_step9](heap.assets/heap_push_step9.png)
设节点总数为 $n$ ,则树的高度为 $O(\log n)$ 。由此可知,堆化操作的循环轮数最多为 $O(\log n)$ **元素入堆操作的时间复杂度为 $O(\log n)$** 。
=== "Python"
```python title="my_heap.py"
[class]{MaxHeap}-[func]{push}
[class]{MaxHeap}-[func]{sift_up}
```
=== "C++"
```cpp title="my_heap.cpp"
[class]{MaxHeap}-[func]{push}
[class]{MaxHeap}-[func]{siftUp}
```
=== "Java"
```java title="my_heap.java"
[class]{MaxHeap}-[func]{push}
[class]{MaxHeap}-[func]{siftUp}
```
=== "C#"
```csharp title="my_heap.cs"
[class]{MaxHeap}-[func]{Push}
[class]{MaxHeap}-[func]{SiftUp}
```
=== "Go"
```go title="my_heap.go"
[class]{maxHeap}-[func]{push}
[class]{maxHeap}-[func]{siftUp}
```
=== "Swift"
```swift title="my_heap.swift"
[class]{MaxHeap}-[func]{push}
[class]{MaxHeap}-[func]{siftUp}
```
=== "JS"
```javascript title="my_heap.js"
[class]{MaxHeap}-[func]{push}
[class]{MaxHeap}-[func]{#siftUp}
```
=== "TS"
```typescript title="my_heap.ts"
[class]{MaxHeap}-[func]{push}
[class]{MaxHeap}-[func]{siftUp}
```
=== "Dart"
```dart title="my_heap.dart"
[class]{MaxHeap}-[func]{push}
[class]{MaxHeap}-[func]{siftUp}
```
=== "Rust"
```rust title="my_heap.rs"
[class]{MaxHeap}-[func]{push}
[class]{MaxHeap}-[func]{sift_up}
```
=== "C"
```c title="my_heap.c"
[class]{maxHeap}-[func]{push}
[class]{maxHeap}-[func]{siftUp}
```
=== "Zig"
```zig title="my_heap.zig"
[class]{MaxHeap}-[func]{push}
[class]{MaxHeap}-[func]{siftUp}
```
### 堆顶元素出堆
堆顶元素是二叉树的根节点,即列表首元素。如果我们直接从列表中删除首元素,那么二叉树中所有节点的索引都会发生变化,这将使得后续使用堆化修复变得困难。为了尽量减少元素索引的变动,我们采用以下操作步骤。
1. 交换堆顶元素与堆底元素(即交换根节点与最右叶节点)。
2. 交换完成后,将堆底从列表中删除(注意,由于已经交换,实际上删除的是原来的堆顶元素)。
3. 从根节点开始,**从顶至底执行堆化**。
如下图所示,**“从顶至底堆化”的操作方向与“从底至顶堆化”相反**,我们将根节点的值与其两个子节点的值进行比较,将最大的子节点与根节点交换。然后循环执行此操作,直到越过叶节点或遇到无须交换的节点时结束。
=== "<1>"
![堆顶元素出堆步骤](heap.assets/heap_pop_step1.png)
=== "<2>"
![heap_pop_step2](heap.assets/heap_pop_step2.png)
=== "<3>"
![heap_pop_step3](heap.assets/heap_pop_step3.png)
=== "<4>"
![heap_pop_step4](heap.assets/heap_pop_step4.png)
=== "<5>"
![heap_pop_step5](heap.assets/heap_pop_step5.png)
=== "<6>"
![heap_pop_step6](heap.assets/heap_pop_step6.png)
=== "<7>"
![heap_pop_step7](heap.assets/heap_pop_step7.png)
=== "<8>"
![heap_pop_step8](heap.assets/heap_pop_step8.png)
=== "<9>"
![heap_pop_step9](heap.assets/heap_pop_step9.png)
=== "<10>"
![heap_pop_step10](heap.assets/heap_pop_step10.png)
与元素入堆操作相似,堆顶元素出堆操作的时间复杂度也为 $O(\log n)$ 。
=== "Python"
```python title="my_heap.py"
[class]{MaxHeap}-[func]{pop}
[class]{MaxHeap}-[func]{sift_down}
```
=== "C++"
```cpp title="my_heap.cpp"
[class]{MaxHeap}-[func]{pop}
[class]{MaxHeap}-[func]{siftDown}
```
=== "Java"
```java title="my_heap.java"
[class]{MaxHeap}-[func]{pop}
[class]{MaxHeap}-[func]{siftDown}
```
=== "C#"
```csharp title="my_heap.cs"
[class]{MaxHeap}-[func]{Pop}
[class]{MaxHeap}-[func]{SiftDown}
```
=== "Go"
```go title="my_heap.go"
[class]{maxHeap}-[func]{pop}
[class]{maxHeap}-[func]{siftDown}
```
=== "Swift"
```swift title="my_heap.swift"
[class]{MaxHeap}-[func]{pop}
[class]{MaxHeap}-[func]{siftDown}
```
=== "JS"
```javascript title="my_heap.js"
[class]{MaxHeap}-[func]{pop}
[class]{MaxHeap}-[func]{#siftDown}
```
=== "TS"
```typescript title="my_heap.ts"
[class]{MaxHeap}-[func]{pop}
[class]{MaxHeap}-[func]{siftDown}
```
=== "Dart"
```dart title="my_heap.dart"
[class]{MaxHeap}-[func]{pop}
[class]{MaxHeap}-[func]{siftDown}
```
=== "Rust"
```rust title="my_heap.rs"
[class]{MaxHeap}-[func]{pop}
[class]{MaxHeap}-[func]{sift_down}
```
=== "C"
```c title="my_heap.c"
[class]{maxHeap}-[func]{pop}
[class]{maxHeap}-[func]{siftDown}
```
=== "Zig"
```zig title="my_heap.zig"
[class]{MaxHeap}-[func]{pop}
[class]{MaxHeap}-[func]{siftDown}
```
## 堆常见应用
- **优先队列**:堆通常作为实现优先队列的首选数据结构,其入队和出队操作的时间复杂度均为 $O(\log n)$ ,而建队操作为 $O(n)$ ,这些操作都非常高效。
- **堆排序**:给定一组数据,我们可以用它们建立一个堆,然后不断地执行元素出堆操作,从而得到有序数据。然而,我们通常会使用一种更优雅的方式实现堆排序,详见后续的堆排序章节。
- **获取最大的 $k$ 个元素**:这是一个经典的算法问题,同时也是一种典型应用,例如选择热度前 10 的新闻作为微博热搜,选取销量前 10 的商品等。

View File

@ -0,0 +1,13 @@
# 堆
<div class="center-table" markdown>
![](../assets/covers/chapter_heap.jpg){ width="600" }
</div>
!!! abstract
堆就像是山川的峰峦,它们层叠起伏、形态各异。
每一座山峰都有其高低之分,而最高的山峰总是最先映入眼帘。

View File

@ -0,0 +1,17 @@
# 小结
### 重点回顾
- 堆是一棵完全二叉树,根据成立条件可分为大顶堆和小顶堆。大(小)顶堆的堆顶元素是最大(小)的。
- 优先队列的定义是具有出队优先级的队列,通常使用堆来实现。
- 堆的常用操作及其对应的时间复杂度包括:元素入堆 $O(\log n)$、堆顶元素出堆 $O(\log n)$ 和访问堆顶元素 $O(1)$ 等。
- 完全二叉树非常适合用数组表示,因此我们通常使用数组来存储堆。
- 堆化操作用于维护堆的性质,在入堆和出堆操作中都会用到。
- 输入 $n$ 个元素并建堆的时间复杂度可以优化至 $O(n)$ ,非常高效。
- Top-K 是一个经典算法问题,可以使用堆数据结构高效解决,时间复杂度为 $O(n \log k)$ 。
### Q & A
!!! question "数据结构的“堆”与内存管理的“堆”是同一个概念吗?"
两者不是同一个概念,只是碰巧都叫堆。计算机系统内存中的堆是动态内存分配的一部分,程序在运行时可以使用它来存储数据。程序可以请求一定量的堆内存,用于存储如对象和数组等复杂结构。当这些数据不再需要时,程序需要释放这些内存,以防止内存泄露。相较于栈内存,堆内存的管理和使用需要更谨慎,不恰当的使用可能会导致内存泄露和野指针等问题。

Binary file not shown.

After

Width:  |  Height:  |  Size: 46 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 62 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 63 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 71 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 62 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 64 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 53 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 41 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 62 KiB

139
docs/chapter_heap/top_k.md Normal file
View File

@ -0,0 +1,139 @@
# Top-K 问题
!!! question
给定一个长度为 $n$ 无序数组 `nums` ,请返回数组中前 $k$ 大的元素。
对于该问题,我们先介绍两种思路比较直接的解法,再介绍效率更高的堆解法。
## 方法一:遍历选择
我们可以进行下图所示的 $k$ 轮遍历,分别在每轮中提取第 $1$、$2$、$\dots$、$k$ 大的元素,时间复杂度为 $O(nk)$ 。
此方法只适用于 $k \ll n$ 的情况,因为当 $k$ 与 $n$ 比较接近时,其时间复杂度趋向于 $O(n^2)$ ,非常耗时。
![遍历寻找最大的 k 个元素](top_k.assets/top_k_traversal.png)
!!! tip
当 $k = n$ 时,我们可以得到完整的有序序列,此时等价于“选择排序”算法。
## 方法二:排序
如下图所示,我们可以先对数组 `nums` 进行排序,再返回最右边的 $k$ 个元素,时间复杂度为 $O(n \log n)$ 。
显然,该方法“超额”完成任务了,因为我们只需要找出最大的 $k$ 个元素即可,而不需要排序其他元素。
![排序寻找最大的 k 个元素](top_k.assets/top_k_sorting.png)
## 方法三:堆
我们可以基于堆更加高效地解决 Top-K 问题,流程如下图所示。
1. 初始化一个小顶堆,其堆顶元素最小。
2. 先将数组的前 $k$ 个元素依次入堆。
3. 从第 $k + 1$ 个元素开始,若当前元素大于堆顶元素,则将堆顶元素出堆,并将当前元素入堆。
4. 遍历完成后,堆中保存的就是最大的 $k$ 个元素。
=== "<1>"
![基于堆寻找最大的 k 个元素](top_k.assets/top_k_heap_step1.png)
=== "<2>"
![top_k_heap_step2](top_k.assets/top_k_heap_step2.png)
=== "<3>"
![top_k_heap_step3](top_k.assets/top_k_heap_step3.png)
=== "<4>"
![top_k_heap_step4](top_k.assets/top_k_heap_step4.png)
=== "<5>"
![top_k_heap_step5](top_k.assets/top_k_heap_step5.png)
=== "<6>"
![top_k_heap_step6](top_k.assets/top_k_heap_step6.png)
=== "<7>"
![top_k_heap_step7](top_k.assets/top_k_heap_step7.png)
=== "<8>"
![top_k_heap_step8](top_k.assets/top_k_heap_step8.png)
=== "<9>"
![top_k_heap_step9](top_k.assets/top_k_heap_step9.png)
总共执行了 $n$ 轮入堆和出堆,堆的最大长度为 $k$ ,因此时间复杂度为 $O(n \log k)$ 。该方法的效率很高,当 $k$ 较小时,时间复杂度趋向 $O(n)$ ;当 $k$ 较大时,时间复杂度不会超过 $O(n \log n)$ 。
另外,该方法适用于动态数据流的使用场景。在不断加入数据时,我们可以持续维护堆内的元素,从而实现最大 $k$ 个元素的动态更新。
=== "Python"
```python title="top_k.py"
[class]{}-[func]{top_k_heap}
```
=== "C++"
```cpp title="top_k.cpp"
[class]{}-[func]{topKHeap}
```
=== "Java"
```java title="top_k.java"
[class]{top_k}-[func]{topKHeap}
```
=== "C#"
```csharp title="top_k.cs"
[class]{top_k}-[func]{TopKHeap}
```
=== "Go"
```go title="top_k.go"
[class]{}-[func]{topKHeap}
```
=== "Swift"
```swift title="top_k.swift"
[class]{}-[func]{topKHeap}
```
=== "JS"
```javascript title="top_k.js"
[class]{}-[func]{topKHeap}
```
=== "TS"
```typescript title="top_k.ts"
[class]{}-[func]{topKHeap}
```
=== "Dart"
```dart title="top_k.dart"
[class]{}-[func]{topKHeap}
```
=== "Rust"
```rust title="top_k.rs"
[class]{}-[func]{top_k_heap}
```
=== "C"
```c title="top_k.c"
[class]{}-[func]{topKHeap}
```
=== "Zig"
```zig title="top_k.zig"
[class]{}-[func]{topKHeap}
```