Add TypeScript code and docs to AVL tree and the coding style for Typescript and JavaScript (#342)

* Add TypeScript code and docs to AVL tree and update JavaScript style

* Update the coding style for Typescript and JavaScript
This commit is contained in:
Justin Tse
2023-02-07 01:21:58 +08:00
committed by GitHub
parent 7f4243ab77
commit b14568151c
9 changed files with 453 additions and 49 deletions

View File

@ -82,14 +82,14 @@ G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorit
```js title="avl_tree.js"
class TreeNode {
val; // 结点值
height; //结点高度
left; // 左子结点指针
right; // 右子结点指针
height; //结点高度
constructor(val, left, right, height) {
this.val = val === undefined ? 0 : val;
this.height = height === undefined ? 0 : height;
this.left = left === undefined ? null : left;
this.right = right === undefined ? null : right;
this.height = height === undefined ? 0 : height;
}
}
```
@ -97,7 +97,18 @@ G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorit
=== "TypeScript"
```typescript title="avl_tree.ts"
class TreeNode {
val: number; // 结点值
height: number; // 结点高度
left: TreeNode | null; // 左子结点指针
right: TreeNode | null; // 右子结点指针
constructor(val?: number, height?: number, left?: TreeNode | null, right?: TreeNode | null) {
this.val = val === undefined ? 0 : val;
this.height = height === undefined ? 0 : height;
this.left = left === undefined ? null : left;
this.right = right === undefined ? null : right;
}
}
```
=== "C"
@ -228,7 +239,17 @@ G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorit
=== "TypeScript"
```typescript title="avl_tree.ts"
/* 获取结点高度 */
height(node: TreeNode): number {
// 空结点高度为 -1 ,叶结点高度为 0
return node === null ? -1 : node.height;
}
/* 更新结点高度 */
updateHeight(node: TreeNode): void {
// 结点高度等于最高子树高度 + 1
node.height = Math.max(this.height(node.left), this.height(node.right)) + 1;
}
```
=== "C"
@ -340,7 +361,13 @@ G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorit
=== "TypeScript"
```typescript title="avl_tree.ts"
/* 获取平衡因子 */
balanceFactor(node: TreeNode): number {
// 空结点平衡因子为 0
if (node === null) return 0;
// 结点平衡因子 = 左子树高度 - 右子树高度
return this.height(node.left) - this.height(node.right);
}
```
=== "C"
@ -479,8 +506,8 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
```js title="avl_tree.js"
/* 右旋操作 */
rightRotate(node) {
let child = node.left;
let grandChild = child.right;
const child = node.left;
const grandChild = child.right;
// 以 child 为原点,将 node 向右旋转
child.right = node;
node.left = grandChild;
@ -495,7 +522,19 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
=== "TypeScript"
```typescript title="avl_tree.ts"
/* 右旋操作 */
rightRotate(node: TreeNode): TreeNode {
const child = node.left;
const grandChild = child.right;
// 以 child 为原点,将 node 向右旋转
child.right = node;
node.left = grandChild;
// 更新结点高度
this.updateHeight(node);
this.updateHeight(child);
// 返回旋转后子树的根节点
return child;
}
```
=== "C"
@ -624,8 +663,8 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
```js title="avl_tree.js"
/* 左旋操作 */
leftRotate(node) {
let child = node.right;
let grandChild = child.left;
const child = node.right;
const grandChild = child.left;
// 以 child 为原点,将 node 向左旋转
child.left = node;
node.right = grandChild;
@ -640,7 +679,19 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
=== "TypeScript"
```typescript title="avl_tree.ts"
/* 左旋操作 */
leftRotate(node: TreeNode): TreeNode {
const child = node.right;
const grandChild = child.left;
// 以 child 为原点,将 node 向左旋转
child.left = node;
node.right = grandChild;
// 更新结点高度
this.updateHeight(node);
this.updateHeight(child);
// 返回旋转后子树的根节点
return child;
}
```
=== "C"
@ -843,7 +894,7 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
/* 执行旋转操作,使该子树重新恢复平衡 */
rotate(node) {
// 获取结点 node 的平衡因子
let balanceFactor = this.balanceFactor(node);
const balanceFactor = this.balanceFactor(node);
// 左偏树
if (balanceFactor > 1) {
if (this.balanceFactor(node.left) >= 0) {
@ -874,7 +925,35 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
=== "TypeScript"
```typescript title="avl_tree.ts"
/* 执行旋转操作,使该子树重新恢复平衡 */
rotate(node: TreeNode): TreeNode {
// 获取结点 node 的平衡因子
const balanceFactor = this.balanceFactor(node);
// 左偏树
if (balanceFactor > 1) {
if (this.balanceFactor(node.left) >= 0) {
// 右旋
return this.rightRotate(node);
} else {
// 先左旋后右旋
node.left = this.leftRotate(node.left);
return this.rightRotate(node);
}
}
// 右偏树
if (balanceFactor < -1) {
if (this.balanceFactor(node.right) <= 0) {
// 左旋
return this.leftRotate(node);
} else {
// 先右旋后左旋
node.right = this.rightRotate(node.right);
return this.leftRotate(node);
}
}
// 平衡树,无需旋转,直接返回
return node;
}
```
=== "C"
@ -1092,7 +1171,29 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
=== "TypeScript"
```typescript title="avl_tree.ts"
/* 插入结点 */
insert(val: number): TreeNode {
this.root = this.insertHelper(this.root, val);
return this.root;
}
/* 递归插入结点(辅助函数) */
insertHelper(node: TreeNode, val: number): TreeNode {
if (node === null) return new TreeNode(val);
/* 1. 查找插入位置,并插入结点 */
if (val < node.val) {
node.left = this.insertHelper(node.left, val);
} else if (val > node.val) {
node.right = this.insertHelper(node.right, val);
} else {
return node; // 重复结点不插入,直接返回
}
this.updateHeight(node); // 更新结点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = this.rotate(node);
// 返回子树的根节点
return node;
}
```
=== "C"
@ -1333,14 +1434,14 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
else if (val > node.val) node.right = this.removeHelper(node.right, val);
else {
if (node.left === null || node.right === null) {
let child = node.left !== null ? node.left : node.right;
const child = node.left !== null ? node.left : node.right;
// 子结点数量 = 0 ,直接删除 node 并返回
if (child === null) return null;
// 子结点数量 = 1 ,直接删除 node
else node = child;
} else {
// 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
let temp = this.getInOrderNext(node.right);
const temp = this.getInOrderNext(node.right);
node.right = this.removeHelper(node.right, temp.val);
node.val = temp.val;
}
@ -1351,12 +1452,68 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
// 返回子树的根节点
return node;
}
/* 获取中序遍历中的下一个结点(仅适用于 root 有左子结点的情况) */
getInOrderNext(node) {
if (node === null) return node;
// 循环访问左子结点,直到叶结点时为最小结点,跳出
while (node.left !== null) {
node = node.left;
}
return node;
}
```
=== "TypeScript"
```typescript title="avl_tree.ts"
/* 删除结点 */
remove(val: number): TreeNode {
this.root = this.removeHelper(this.root, val);
return this.root;
}
/* 递归删除结点(辅助函数) */
removeHelper(node: TreeNode, val: number): TreeNode {
if (node === null) return null;
/* 1. 查找结点,并删除之 */
if (val < node.val) {
node.left = this.removeHelper(node.left, val);
} else if (val > node.val) {
node.right = this.removeHelper(node.right, val);
} else {
if (node.left === null || node.right === null) {
const child = node.left !== null ? node.left : node.right;
// 子结点数量 = 0 ,直接删除 node 并返回
if (child === null) {
return null;
} else {
// 子结点数量 = 1 ,直接删除 node
node = child;
}
} else {
// 子结点数量 = 2 ,则将中序遍历的下个结点删除,并用该结点替换当前结点
const temp = this.getInOrderNext(node.right);
node.right = this.removeHelper(node.right, temp.val);
node.val = temp.val;
}
}
this.updateHeight(node); // 更新结点高度
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
node = this.rotate(node);
// 返回子树的根节点
return node;
}
/* 获取中序遍历中的下一个结点(仅适用于 root 有左子结点的情况) */
getInOrderNext(node: TreeNode): TreeNode {
if (node === null) return node;
// 循环访问左子结点,直到叶结点时为最小结点,跳出
while (node.left !== null) {
node = node.left;
}
return node;
}
```
=== "C"