Add Java and C++ code for the chapter of DP.

This commit is contained in:
krahets
2023-07-11 01:08:26 +08:00
parent 465dafe9ec
commit ad0fd45cfb
9 changed files with 494 additions and 19 deletions

View File

@ -2,4 +2,6 @@ add_executable(climbing_stairs_backtrack climbing_stairs_backtrack.cpp)
add_executable(climbing_stairs_dfs climbing_stairs_dfs.cpp)
add_executable(climbing_stairs_dfs_mem climbing_stairs_dfs_mem.cpp)
add_executable(climbing_stairs_dp climbing_stairs_dp.cpp)
add_executable(min_cost_climbing_stairs_dp min_cost_climbing_stairs_dp.cpp)
add_executable(min_cost_climbing_stairs_dp min_cost_climbing_stairs_dp.cpp)
add_executable(min_path_sum min_path_sum.cpp)
add_executable(knapsack knapsack.cpp)

View File

@ -0,0 +1,109 @@
#include <algorithm>
#include <iostream>
#include <vector>
using namespace std;
/* 0-1 背包:暴力搜索 */
int knapsackDFS(vector<int> &wgt, vector<int> &val, int i, int c) {
// 若已选完所有物品或背包无容量,则返回价值 0
if (i == 0 || c == 0) {
return 0;
}
// 若超过背包容量,则只能不放入背包
if (wgt[i - 1] > c) {
return knapsackDFS(wgt, val, i - 1, c);
}
// 计算不放入和放入物品 i 的最大价值
int no = knapsackDFS(wgt, val, i - 1, c);
int yes = knapsackDFS(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1];
// 返回两种方案中价值更大的那一个
return max(no, yes);
}
/* 0-1 背包:记忆化搜索 */
int knapsackDFSMem(vector<int> &wgt, vector<int> &val, vector<vector<int>> &mem, int i, int c) {
// 若已选完所有物品或背包无容量,则返回价值 0
if (i == 0 || c == 0) {
return 0;
}
// 若已有记录,则直接返回
if (mem[i][c] != -1) {
return mem[i][c];
}
// 若超过背包容量,则只能不放入背包
if (wgt[i - 1] > c) {
return knapsackDFSMem(wgt, val, mem, i - 1, c);
}
// 计算不放入和放入物品 i 的最大价值
int no = knapsackDFSMem(wgt, val, mem, i - 1, c);
int yes = knapsackDFSMem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1];
// 记录并返回两种方案中价值更大的那一个
mem[i][c] = max(no, yes);
return mem[i][c];
}
/* 0-1 背包:动态规划 */
int knapsackDP(vector<int> &wgt, vector<int> &val, int cap) {
int n = wgt.size();
// 初始化 dp 表
vector<vector<int>> dp(n + 1, vector<int>(cap + 1, 0));
// 状态转移
for (int i = 1; i <= n; i++) {
for (int c = 1; c <= cap; c++) {
if (wgt[i - 1] > c) {
// 若超过背包容量,则不选物品 i
dp[i][c] = dp[i - 1][c];
} else {
// 不选和选物品 i 这两种方案的较大值
dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1]);
}
}
}
return dp[n][cap];
}
/* 0-1 背包:状态压缩后的动态规划 */
int knapsackDPComp(vector<int> &wgt, vector<int> &val, int cap) {
int n = wgt.size();
// 初始化 dp 表
vector<int> dp(cap + 1, 0);
// 状态转移
for (int i = 1; i <= n; i++) {
// 倒序遍历
for (int c = cap; c >= 1; c--) {
if (wgt[i - 1] <= c) {
// 不选和选物品 i 这两种方案的较大值
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1]);
}
}
}
return dp[cap];
}
/* Driver Code */
int main() {
vector<int> wgt = {10, 20, 30, 40, 50};
vector<int> val = {50, 120, 150, 210, 240};
int cap = 50;
int n = wgt.size();
// 暴力搜索
int res = knapsackDFS(wgt, val, n, cap);
cout << "不超过背包容量的最大物品价值为 " << res << endl;
// 记忆化搜索
vector<vector<int>> mem(n + 1, vector<int>(cap + 1, -1));
res = knapsackDFSMem(wgt, val, mem, n, cap);
cout << "不超过背包容量的最大物品价值为 " << res << endl;
// 动态规划
res = knapsackDP(wgt, val, cap);
cout << "不超过背包容量的最大物品价值为 " << res << endl;
// 状态压缩后的动态规划
res = knapsackDPComp(wgt, val, cap);
cout << "不超过背包容量的最大物品价值为 " << res << endl;
return 0;
}

View File

@ -0,0 +1,116 @@
/**
* File: min_path_sum.cpp
* Created Time: 2023-07-10
* Author: Krahets (krahets@163.com)
*/
#include "../utils/common.hpp"
/* 最小路径和:暴力搜索 */
int minPathSumDFS(vector<vector<int>> &grid, int i, int j) {
// 若为左上角单元格,则终止搜索
if (i == 0 && j == 0) {
return grid[0][0];
}
// 若行列索引越界,则返回 +∞ 代价
if (i < 0 || j < 0) {
return INT_MAX;
}
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
int left = minPathSumDFS(grid, i - 1, j);
int up = minPathSumDFS(grid, i, j - 1);
// 返回从左上角到 (i, j) 的最小路径代价
return min(left, up) != INT_MAX ? min(left, up) + grid[i][j] : INT_MAX;
}
/* 最小路径和:记忆化搜索 */
int minPathSumDFSMem(vector<vector<int>> &grid, vector<vector<int>> &mem, int i, int j) {
// 若为左上角单元格,则终止搜索
if (i == 0 && j == 0) {
return grid[0][0];
}
// 若行列索引越界,则返回 +∞ 代价
if (i < 0 || j < 0) {
return INT_MAX;
}
// 若已有记录,则直接返回
if (mem[i][j] != -1) {
return mem[i][j];
}
// 左边和上边单元格的最小路径代价
int left = minPathSumDFSMem(grid, mem, i - 1, j);
int up = minPathSumDFSMem(grid, mem, i, j - 1);
// 记录并返回左上角到 (i, j) 的最小路径代价
mem[i][j] = min(left, up) != INT_MAX ? min(left, up) + grid[i][j] : INT_MAX;
return mem[i][j];
}
/* 最小路径和:动态规划 */
int minPathSumDP(vector<vector<int>> &grid) {
int n = grid.size(), m = grid[0].size();
// 初始化 dp 表
vector<vector<int>> dp(n, vector<int>(m));
dp[0][0] = grid[0][0];
// 状态转移:首行
for (int j = 1; j < m; j++) {
dp[0][j] = dp[0][j - 1] + grid[0][j];
}
// 状态转移:首列
for (int i = 1; i < n; i++) {
dp[i][0] = dp[i - 1][0] + grid[i][0];
}
// 状态转移:其余行列
for (int i = 1; i < n; i++) {
for (int j = 1; j < m; j++) {
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j];
}
}
return dp[n - 1][m - 1];
}
/* 最小路径和:状态压缩后的动态规划 */
int minPathSumDPComp(vector<vector<int>> &grid) {
int n = grid.size(), m = grid[0].size();
// 初始化 dp 表
vector<int> dp(m);
// 状态转移:首行
dp[0] = grid[0][0];
for (int j = 1; j < m; j++) {
dp[j] = dp[j - 1] + grid[0][j];
}
// 状态转移:其余行
for (int i = 1; i < n; i++) {
// 状态转移:首列
dp[0] = dp[0] + grid[i][0];
// 状态转移:其余列
for (int j = 1; j < m; j++) {
dp[j] = min(dp[j - 1], dp[j]) + grid[i][j];
}
}
return dp[m - 1];
}
/* Driver Code */
int main() {
vector<vector<int>> grid = {{1, 3, 1, 5}, {2, 2, 4, 2}, {5, 3, 2, 1}, {4, 3, 5, 2}};
int n = grid.size(), m = grid[0].size();
// 暴力搜索
int res = minPathSumDFS(grid, n - 1, m - 1);
cout << "从左上角到右下角的最小路径和为 " << res << endl;
// 记忆化搜索
vector<vector<int>> mem(n, vector<int>(m, -1));
res = minPathSumDFSMem(grid, mem, n - 1, m - 1);
cout << "从左上角到右下角的最小路径和为 " << res << endl;
// 动态规划
res = minPathSumDP(grid);
cout << "从左上角到右下角的最小路径和为 " << res << endl;
// 状态压缩后的动态规划
res = minPathSumDPComp(grid);
cout << "从左上角到右下角的最小路径和为 " << res << endl;
return 0;
}