This commit is contained in:
krahets
2023-05-16 14:51:45 +08:00
parent 973a1e07df
commit a986c557dc
61 changed files with 795 additions and 198 deletions

View File

@ -563,7 +563,7 @@
<li class="md-nav__item">
<a href="../../chapter_data_structure/data_and_memory/" class="md-nav__link">
3.1. &nbsp; 数据与内存
3.1. &nbsp; 基本数据类型
</a>
</li>
@ -2020,21 +2020,176 @@
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.go</span><pre><span></span><code><a id="__codelineno-3-1" name="__codelineno-3-1" href="#__codelineno-3-1"></a><span class="p">[</span><span class="nx">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="nx">backtrack</span><span class="p">}</span>
<a id="__codelineno-3-2" name="__codelineno-3-2" href="#__codelineno-3-2"></a>
<a id="__codelineno-3-3" name="__codelineno-3-3" href="#__codelineno-3-3"></a><span class="p">[</span><span class="nx">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="nx">nQueens</span><span class="p">}</span>
<div class="highlight"><span class="filename">n_queens.go</span><pre><span></span><code><a id="__codelineno-3-1" name="__codelineno-3-1" href="#__codelineno-3-1"></a><span class="cm">/* 回溯算法N 皇后 */</span>
<a id="__codelineno-3-2" name="__codelineno-3-2" href="#__codelineno-3-2"></a><span class="kd">func</span><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="nx">row</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="w"> </span><span class="o">*</span><span class="p">[][]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="w"> </span><span class="o">*</span><span class="p">[][][]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="w"> </span><span class="o">*</span><span class="p">[]</span><span class="kt">bool</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-3" name="__codelineno-3-3" href="#__codelineno-3-3"></a><span class="w"> </span><span class="c1">// 当放置完所有行时,记录解</span>
<a id="__codelineno-3-4" name="__codelineno-3-4" href="#__codelineno-3-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-5" name="__codelineno-3-5" href="#__codelineno-3-5"></a><span class="w"> </span><span class="nx">newState</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([][]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nb">len</span><span class="p">(</span><span class="o">*</span><span class="nx">state</span><span class="p">))</span>
<a id="__codelineno-3-6" name="__codelineno-3-6" href="#__codelineno-3-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="p">,</span><span class="w"> </span><span class="nx">_</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="k">range</span><span class="w"> </span><span class="nx">newState</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-7" name="__codelineno-3-7" href="#__codelineno-3-7"></a><span class="w"> </span><span class="nx">newState</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nb">len</span><span class="p">((</span><span class="o">*</span><span class="nx">state</span><span class="p">)[</span><span class="mi">0</span><span class="p">]))</span>
<a id="__codelineno-3-8" name="__codelineno-3-8" href="#__codelineno-3-8"></a><span class="w"> </span><span class="nb">copy</span><span class="p">(</span><span class="nx">newState</span><span class="p">[</span><span class="nx">i</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">state</span><span class="p">)[</span><span class="nx">i</span><span class="p">])</span>
<a id="__codelineno-3-9" name="__codelineno-3-9" href="#__codelineno-3-9"></a>
<a id="__codelineno-3-10" name="__codelineno-3-10" href="#__codelineno-3-10"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-11" name="__codelineno-3-11" href="#__codelineno-3-11"></a><span class="w"> </span><span class="o">*</span><span class="nx">res</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nb">append</span><span class="p">(</span><span class="o">*</span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">newState</span><span class="p">)</span>
<a id="__codelineno-3-12" name="__codelineno-3-12" href="#__codelineno-3-12"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-13" name="__codelineno-3-13" href="#__codelineno-3-13"></a><span class="w"> </span><span class="c1">// 遍历所有列</span>
<a id="__codelineno-3-14" name="__codelineno-3-14" href="#__codelineno-3-14"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-15" name="__codelineno-3-15" href="#__codelineno-3-15"></a><span class="w"> </span><span class="c1">// 计算该格子对应的主对角线和副对角线</span>
<a id="__codelineno-3-16" name="__codelineno-3-16" href="#__codelineno-3-16"></a><span class="w"> </span><span class="nx">diag1</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span>
<a id="__codelineno-3-17" name="__codelineno-3-17" href="#__codelineno-3-17"></a><span class="w"> </span><span class="nx">diag2</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">col</span>
<a id="__codelineno-3-18" name="__codelineno-3-18" href="#__codelineno-3-18"></a><span class="w"> </span><span class="c1">// 剪枝:不允许该格子所在 (列 或 主对角线 或 副对角线) 包含皇后</span>
<a id="__codelineno-3-19" name="__codelineno-3-19" href="#__codelineno-3-19"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">!((</span><span class="o">*</span><span class="nx">cols</span><span class="p">)[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags1</span><span class="p">)[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags2</span><span class="p">)[</span><span class="nx">diag2</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-20" name="__codelineno-3-20" href="#__codelineno-3-20"></a><span class="w"> </span><span class="c1">// 尝试:将皇后放置在该格子</span>
<a id="__codelineno-3-21" name="__codelineno-3-21" href="#__codelineno-3-21"></a><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">state</span><span class="p">)[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">&quot;Q&quot;</span>
<a id="__codelineno-3-22" name="__codelineno-3-22" href="#__codelineno-3-22"></a><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">cols</span><span class="p">)[</span><span class="nx">col</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags1</span><span class="p">)[</span><span class="nx">diag1</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags2</span><span class="p">)[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="kc">true</span><span class="p">,</span><span class="w"> </span><span class="kc">true</span><span class="p">,</span><span class="w"> </span><span class="kc">true</span>
<a id="__codelineno-3-23" name="__codelineno-3-23" href="#__codelineno-3-23"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-3-24" name="__codelineno-3-24" href="#__codelineno-3-24"></a><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="nx">row</span><span class="o">+</span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="p">)</span>
<a id="__codelineno-3-25" name="__codelineno-3-25" href="#__codelineno-3-25"></a><span class="w"> </span><span class="c1">// 回退:将该格子恢复为空位</span>
<a id="__codelineno-3-26" name="__codelineno-3-26" href="#__codelineno-3-26"></a><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">state</span><span class="p">)[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">&quot;#&quot;</span>
<a id="__codelineno-3-27" name="__codelineno-3-27" href="#__codelineno-3-27"></a><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">cols</span><span class="p">)[</span><span class="nx">col</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags1</span><span class="p">)[</span><span class="nx">diag1</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags2</span><span class="p">)[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="kc">false</span><span class="p">,</span><span class="w"> </span><span class="kc">false</span><span class="p">,</span><span class="w"> </span><span class="kc">false</span>
<a id="__codelineno-3-28" name="__codelineno-3-28" href="#__codelineno-3-28"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-29" name="__codelineno-3-29" href="#__codelineno-3-29"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-30" name="__codelineno-3-30" href="#__codelineno-3-30"></a><span class="p">}</span>
<a id="__codelineno-3-31" name="__codelineno-3-31" href="#__codelineno-3-31"></a>
<a id="__codelineno-3-32" name="__codelineno-3-32" href="#__codelineno-3-32"></a><span class="cm">/* 回溯算法N 皇后 */</span>
<a id="__codelineno-3-33" name="__codelineno-3-33" href="#__codelineno-3-33"></a><span class="kd">func</span><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="nx">row</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="w"> </span><span class="o">*</span><span class="p">[][]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="w"> </span><span class="o">*</span><span class="p">[][][]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="w"> </span><span class="o">*</span><span class="p">[]</span><span class="kt">bool</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-34" name="__codelineno-3-34" href="#__codelineno-3-34"></a><span class="w"> </span><span class="c1">// 当放置完所有行时,记录解</span>
<a id="__codelineno-3-35" name="__codelineno-3-35" href="#__codelineno-3-35"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-36" name="__codelineno-3-36" href="#__codelineno-3-36"></a><span class="w"> </span><span class="nx">newState</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([][]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nb">len</span><span class="p">(</span><span class="o">*</span><span class="nx">state</span><span class="p">))</span>
<a id="__codelineno-3-37" name="__codelineno-3-37" href="#__codelineno-3-37"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="p">,</span><span class="w"> </span><span class="nx">_</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="k">range</span><span class="w"> </span><span class="nx">newState</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-38" name="__codelineno-3-38" href="#__codelineno-3-38"></a><span class="w"> </span><span class="nx">newState</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nb">len</span><span class="p">((</span><span class="o">*</span><span class="nx">state</span><span class="p">)[</span><span class="mi">0</span><span class="p">]))</span>
<a id="__codelineno-3-39" name="__codelineno-3-39" href="#__codelineno-3-39"></a><span class="w"> </span><span class="nb">copy</span><span class="p">(</span><span class="nx">newState</span><span class="p">[</span><span class="nx">i</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">state</span><span class="p">)[</span><span class="nx">i</span><span class="p">])</span>
<a id="__codelineno-3-40" name="__codelineno-3-40" href="#__codelineno-3-40"></a>
<a id="__codelineno-3-41" name="__codelineno-3-41" href="#__codelineno-3-41"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-42" name="__codelineno-3-42" href="#__codelineno-3-42"></a><span class="w"> </span><span class="o">*</span><span class="nx">res</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nb">append</span><span class="p">(</span><span class="o">*</span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">newState</span><span class="p">)</span>
<a id="__codelineno-3-43" name="__codelineno-3-43" href="#__codelineno-3-43"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-44" name="__codelineno-3-44" href="#__codelineno-3-44"></a><span class="w"> </span><span class="c1">// 遍历所有列</span>
<a id="__codelineno-3-45" name="__codelineno-3-45" href="#__codelineno-3-45"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-46" name="__codelineno-3-46" href="#__codelineno-3-46"></a><span class="w"> </span><span class="c1">// 计算该格子对应的主对角线和副对角线</span>
<a id="__codelineno-3-47" name="__codelineno-3-47" href="#__codelineno-3-47"></a><span class="w"> </span><span class="nx">diag1</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span>
<a id="__codelineno-3-48" name="__codelineno-3-48" href="#__codelineno-3-48"></a><span class="w"> </span><span class="nx">diag2</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">col</span>
<a id="__codelineno-3-49" name="__codelineno-3-49" href="#__codelineno-3-49"></a><span class="w"> </span><span class="c1">// 剪枝:不允许该格子所在 (列 或 主对角线 或 副对角线) 包含皇后</span>
<a id="__codelineno-3-50" name="__codelineno-3-50" href="#__codelineno-3-50"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">!((</span><span class="o">*</span><span class="nx">cols</span><span class="p">)[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags1</span><span class="p">)[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags2</span><span class="p">)[</span><span class="nx">diag2</span><span class="p">])</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-51" name="__codelineno-3-51" href="#__codelineno-3-51"></a><span class="w"> </span><span class="c1">// 尝试:将皇后放置在该格子</span>
<a id="__codelineno-3-52" name="__codelineno-3-52" href="#__codelineno-3-52"></a><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">state</span><span class="p">)[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">&quot;Q&quot;</span>
<a id="__codelineno-3-53" name="__codelineno-3-53" href="#__codelineno-3-53"></a><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">cols</span><span class="p">)[</span><span class="nx">col</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags1</span><span class="p">)[</span><span class="nx">diag1</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags2</span><span class="p">)[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="kc">true</span><span class="p">,</span><span class="w"> </span><span class="kc">true</span><span class="p">,</span><span class="w"> </span><span class="kc">true</span>
<a id="__codelineno-3-54" name="__codelineno-3-54" href="#__codelineno-3-54"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-3-55" name="__codelineno-3-55" href="#__codelineno-3-55"></a><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="nx">row</span><span class="o">+</span><span class="mi">1</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="p">)</span>
<a id="__codelineno-3-56" name="__codelineno-3-56" href="#__codelineno-3-56"></a><span class="w"> </span><span class="c1">// 回退:将该格子恢复为空位</span>
<a id="__codelineno-3-57" name="__codelineno-3-57" href="#__codelineno-3-57"></a><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">state</span><span class="p">)[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">&quot;#&quot;</span>
<a id="__codelineno-3-58" name="__codelineno-3-58" href="#__codelineno-3-58"></a><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">cols</span><span class="p">)[</span><span class="nx">col</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags1</span><span class="p">)[</span><span class="nx">diag1</span><span class="p">],</span><span class="w"> </span><span class="p">(</span><span class="o">*</span><span class="nx">diags2</span><span class="p">)[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="kc">false</span><span class="p">,</span><span class="w"> </span><span class="kc">false</span><span class="p">,</span><span class="w"> </span><span class="kc">false</span>
<a id="__codelineno-3-59" name="__codelineno-3-59" href="#__codelineno-3-59"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-60" name="__codelineno-3-60" href="#__codelineno-3-60"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-61" name="__codelineno-3-61" href="#__codelineno-3-61"></a><span class="p">}</span>
<a id="__codelineno-3-62" name="__codelineno-3-62" href="#__codelineno-3-62"></a>
<a id="__codelineno-3-63" name="__codelineno-3-63" href="#__codelineno-3-63"></a><span class="kd">func</span><span class="w"> </span><span class="nx">nQueens</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="kt">int</span><span class="p">)</span><span class="w"> </span><span class="p">[][][]</span><span class="kt">string</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-64" name="__codelineno-3-64" href="#__codelineno-3-64"></a><span class="w"> </span><span class="c1">// 初始化 n*n 大小的棋盘,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-3-65" name="__codelineno-3-65" href="#__codelineno-3-65"></a><span class="w"> </span><span class="nx">state</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([][]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">)</span>
<a id="__codelineno-3-66" name="__codelineno-3-66" href="#__codelineno-3-66"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-67" name="__codelineno-3-67" href="#__codelineno-3-67"></a><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">)</span>
<a id="__codelineno-3-68" name="__codelineno-3-68" href="#__codelineno-3-68"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="p">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-3-69" name="__codelineno-3-69" href="#__codelineno-3-69"></a><span class="w"> </span><span class="nx">row</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="s">&quot;#&quot;</span>
<a id="__codelineno-3-70" name="__codelineno-3-70" href="#__codelineno-3-70"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-71" name="__codelineno-3-71" href="#__codelineno-3-71"></a><span class="w"> </span><span class="nx">state</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="p">=</span><span class="w"> </span><span class="nx">row</span>
<a id="__codelineno-3-72" name="__codelineno-3-72" href="#__codelineno-3-72"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-3-73" name="__codelineno-3-73" href="#__codelineno-3-73"></a><span class="w"> </span><span class="c1">// 记录列是否有皇后</span>
<a id="__codelineno-3-74" name="__codelineno-3-74" href="#__codelineno-3-74"></a><span class="w"> </span><span class="nx">cols</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="kt">bool</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">)</span>
<a id="__codelineno-3-75" name="__codelineno-3-75" href="#__codelineno-3-75"></a><span class="w"> </span><span class="nx">diags1</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="kt">bool</span><span class="p">,</span><span class="w"> </span><span class="mi">2</span><span class="o">*</span><span class="nx">n</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-3-76" name="__codelineno-3-76" href="#__codelineno-3-76"></a><span class="w"> </span><span class="nx">diags2</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([]</span><span class="kt">bool</span><span class="p">,</span><span class="w"> </span><span class="mi">2</span><span class="o">*</span><span class="nx">n</span><span class="o">-</span><span class="mi">1</span><span class="p">)</span>
<a id="__codelineno-3-77" name="__codelineno-3-77" href="#__codelineno-3-77"></a><span class="w"> </span><span class="nx">res</span><span class="w"> </span><span class="o">:=</span><span class="w"> </span><span class="nb">make</span><span class="p">([][][]</span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span>
<a id="__codelineno-3-78" name="__codelineno-3-78" href="#__codelineno-3-78"></a><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="mi">0</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="o">&amp;</span><span class="nx">diags2</span><span class="p">)</span>
<a id="__codelineno-3-79" name="__codelineno-3-79" href="#__codelineno-3-79"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">res</span>
<a id="__codelineno-3-80" name="__codelineno-3-80" href="#__codelineno-3-80"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.js</span><pre><span></span><code><a id="__codelineno-4-1" name="__codelineno-4-1" href="#__codelineno-4-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">backtrack</span><span class="p">}</span>
<a id="__codelineno-4-2" name="__codelineno-4-2" href="#__codelineno-4-2"></a>
<a id="__codelineno-4-3" name="__codelineno-4-3" href="#__codelineno-4-3"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">nQueens</span><span class="p">}</span>
<div class="highlight"><span class="filename">n_queens.js</span><pre><span></span><code><a id="__codelineno-4-1" name="__codelineno-4-1" href="#__codelineno-4-1"></a><span class="cm">/* 回溯算法N 皇后 */</span>
<a id="__codelineno-4-2" name="__codelineno-4-2" href="#__codelineno-4-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="nx">row</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-3" name="__codelineno-4-3" href="#__codelineno-4-3"></a><span class="w"> </span><span class="c1">// 当放置完所有行时,记录解</span>
<a id="__codelineno-4-4" name="__codelineno-4-4" href="#__codelineno-4-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">row</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-5" name="__codelineno-4-5" href="#__codelineno-4-5"></a><span class="w"> </span><span class="nx">res</span><span class="p">.</span><span class="nx">push</span><span class="p">(</span><span class="nx">state</span><span class="p">.</span><span class="nx">map</span><span class="p">((</span><span class="nx">row</span><span class="p">)</span><span class="w"> </span><span class="p">=&gt;</span><span class="w"> </span><span class="nx">row</span><span class="p">.</span><span class="nx">slice</span><span class="p">()));</span>
<a id="__codelineno-4-6" name="__codelineno-4-6" href="#__codelineno-4-6"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-4-7" name="__codelineno-4-7" href="#__codelineno-4-7"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-4-8" name="__codelineno-4-8" href="#__codelineno-4-8"></a><span class="w"> </span><span class="c1">// 遍历所有列</span>
<a id="__codelineno-4-9" name="__codelineno-4-9" href="#__codelineno-4-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-10" name="__codelineno-4-10" href="#__codelineno-4-10"></a><span class="w"> </span><span class="c1">// 计算该格子对应的主对角线和副对角线</span>
<a id="__codelineno-4-11" name="__codelineno-4-11" href="#__codelineno-4-11"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diag1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-4-12" name="__codelineno-4-12" href="#__codelineno-4-12"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diag2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">col</span><span class="p">;</span>
<a id="__codelineno-4-13" name="__codelineno-4-13" href="#__codelineno-4-13"></a><span class="w"> </span><span class="c1">// 剪枝:不允许该格子所在 (列 或 主对角线 或 副对角线) 包含皇后</span>
<a id="__codelineno-4-14" name="__codelineno-4-14" href="#__codelineno-4-14"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="o">!</span><span class="p">(</span><span class="nx">cols</span><span class="p">[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">diags1</span><span class="p">[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">diags2</span><span class="p">[</span><span class="nx">diag2</span><span class="p">]))</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-15" name="__codelineno-4-15" href="#__codelineno-4-15"></a><span class="w"> </span><span class="c1">// 尝试:将皇后放置在该格子</span>
<a id="__codelineno-4-16" name="__codelineno-4-16" href="#__codelineno-4-16"></a><span class="w"> </span><span class="nx">state</span><span class="p">[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s1">&#39;Q&#39;</span><span class="p">;</span>
<a id="__codelineno-4-17" name="__codelineno-4-17" href="#__codelineno-4-17"></a><span class="w"> </span><span class="nx">cols</span><span class="p">[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags1</span><span class="p">[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags2</span><span class="p">[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">true</span><span class="p">;</span>
<a id="__codelineno-4-18" name="__codelineno-4-18" href="#__codelineno-4-18"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-4-19" name="__codelineno-4-19" href="#__codelineno-4-19"></a><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="nx">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="p">);</span>
<a id="__codelineno-4-20" name="__codelineno-4-20" href="#__codelineno-4-20"></a><span class="w"> </span><span class="c1">// 回退:将该格子恢复为空位</span>
<a id="__codelineno-4-21" name="__codelineno-4-21" href="#__codelineno-4-21"></a><span class="w"> </span><span class="nx">state</span><span class="p">[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s1">&#39;#&#39;</span><span class="p">;</span>
<a id="__codelineno-4-22" name="__codelineno-4-22" href="#__codelineno-4-22"></a><span class="w"> </span><span class="nx">cols</span><span class="p">[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags1</span><span class="p">[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags2</span><span class="p">[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">false</span><span class="p">;</span>
<a id="__codelineno-4-23" name="__codelineno-4-23" href="#__codelineno-4-23"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-4-24" name="__codelineno-4-24" href="#__codelineno-4-24"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-4-25" name="__codelineno-4-25" href="#__codelineno-4-25"></a><span class="p">}</span>
<a id="__codelineno-4-26" name="__codelineno-4-26" href="#__codelineno-4-26"></a>
<a id="__codelineno-4-27" name="__codelineno-4-27" href="#__codelineno-4-27"></a><span class="cm">/* 求解 N 皇后 */</span>
<a id="__codelineno-4-28" name="__codelineno-4-28" href="#__codelineno-4-28"></a><span class="kd">function</span><span class="w"> </span><span class="nx">nQueens</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-29" name="__codelineno-4-29" href="#__codelineno-4-29"></a><span class="w"> </span><span class="c1">// 初始化 n*n 大小的棋盘,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-4-30" name="__codelineno-4-30" href="#__codelineno-4-30"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">state</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=&gt;</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="s1">&#39;#&#39;</span><span class="p">));</span>
<a id="__codelineno-4-31" name="__codelineno-4-31" href="#__codelineno-4-31"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">cols</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录列是否有皇后</span>
<a id="__codelineno-4-32" name="__codelineno-4-32" href="#__codelineno-4-32"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diags1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="mf">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录主对角线是否有皇后</span>
<a id="__codelineno-4-33" name="__codelineno-4-33" href="#__codelineno-4-33"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diags2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="mf">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录副对角线是否有皇后</span>
<a id="__codelineno-4-34" name="__codelineno-4-34" href="#__codelineno-4-34"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">res</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">[];</span>
<a id="__codelineno-4-35" name="__codelineno-4-35" href="#__codelineno-4-35"></a>
<a id="__codelineno-4-36" name="__codelineno-4-36" href="#__codelineno-4-36"></a><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="mf">0</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="p">);</span>
<a id="__codelineno-4-37" name="__codelineno-4-37" href="#__codelineno-4-37"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">res</span><span class="p">;</span>
<a id="__codelineno-4-38" name="__codelineno-4-38" href="#__codelineno-4-38"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.ts</span><pre><span></span><code><a id="__codelineno-5-1" name="__codelineno-5-1" href="#__codelineno-5-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">backtrack</span><span class="p">}</span>
<a id="__codelineno-5-2" name="__codelineno-5-2" href="#__codelineno-5-2"></a>
<a id="__codelineno-5-3" name="__codelineno-5-3" href="#__codelineno-5-3"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">nQueens</span><span class="p">}</span>
<div class="highlight"><span class="filename">n_queens.ts</span><pre><span></span><code><a id="__codelineno-5-1" name="__codelineno-5-1" href="#__codelineno-5-1"></a><span class="cm">/* 回溯算法N 皇后 */</span>
<a id="__codelineno-5-2" name="__codelineno-5-2" href="#__codelineno-5-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span>
<a id="__codelineno-5-3" name="__codelineno-5-3" href="#__codelineno-5-3"></a><span class="w"> </span><span class="nx">row</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">,</span>
<a id="__codelineno-5-4" name="__codelineno-5-4" href="#__codelineno-5-4"></a><span class="w"> </span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">,</span>
<a id="__codelineno-5-5" name="__codelineno-5-5" href="#__codelineno-5-5"></a><span class="w"> </span><span class="nx">state</span><span class="o">:</span><span class="w"> </span><span class="kt">string</span><span class="p">[][],</span>
<a id="__codelineno-5-6" name="__codelineno-5-6" href="#__codelineno-5-6"></a><span class="w"> </span><span class="nx">res</span><span class="o">:</span><span class="w"> </span><span class="kt">string</span><span class="p">[][][],</span>
<a id="__codelineno-5-7" name="__codelineno-5-7" href="#__codelineno-5-7"></a><span class="w"> </span><span class="nx">cols</span><span class="o">:</span><span class="w"> </span><span class="kt">boolean</span><span class="p">[],</span>
<a id="__codelineno-5-8" name="__codelineno-5-8" href="#__codelineno-5-8"></a><span class="w"> </span><span class="nx">diags1</span><span class="o">:</span><span class="w"> </span><span class="kt">boolean</span><span class="p">[],</span>
<a id="__codelineno-5-9" name="__codelineno-5-9" href="#__codelineno-5-9"></a><span class="w"> </span><span class="nx">diags2</span><span class="o">:</span><span class="w"> </span><span class="kt">boolean</span><span class="p">[]</span>
<a id="__codelineno-5-10" name="__codelineno-5-10" href="#__codelineno-5-10"></a><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="ow">void</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-5-11" name="__codelineno-5-11" href="#__codelineno-5-11"></a><span class="w"> </span><span class="c1">// 当放置完所有行时,记录解</span>
<a id="__codelineno-5-12" name="__codelineno-5-12" href="#__codelineno-5-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">row</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-5-13" name="__codelineno-5-13" href="#__codelineno-5-13"></a><span class="w"> </span><span class="nx">res</span><span class="p">.</span><span class="nx">push</span><span class="p">(</span><span class="nx">state</span><span class="p">.</span><span class="nx">map</span><span class="p">((</span><span class="nx">row</span><span class="p">)</span><span class="w"> </span><span class="p">=&gt;</span><span class="w"> </span><span class="nx">row</span><span class="p">.</span><span class="nx">slice</span><span class="p">()));</span>
<a id="__codelineno-5-14" name="__codelineno-5-14" href="#__codelineno-5-14"></a><span class="w"> </span><span class="k">return</span><span class="p">;</span>
<a id="__codelineno-5-15" name="__codelineno-5-15" href="#__codelineno-5-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-5-16" name="__codelineno-5-16" href="#__codelineno-5-16"></a><span class="w"> </span><span class="c1">// 遍历所有列</span>
<a id="__codelineno-5-17" name="__codelineno-5-17" href="#__codelineno-5-17"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">col</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-5-18" name="__codelineno-5-18" href="#__codelineno-5-18"></a><span class="w"> </span><span class="c1">// 计算该格子对应的主对角线和副对角线</span>
<a id="__codelineno-5-19" name="__codelineno-5-19" href="#__codelineno-5-19"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diag1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">col</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-5-20" name="__codelineno-5-20" href="#__codelineno-5-20"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diag2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">col</span><span class="p">;</span>
<a id="__codelineno-5-21" name="__codelineno-5-21" href="#__codelineno-5-21"></a><span class="w"> </span><span class="c1">// 剪枝:不允许该格子所在 (列 或 主对角线 或 副对角线) 包含皇后</span>
<a id="__codelineno-5-22" name="__codelineno-5-22" href="#__codelineno-5-22"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="o">!</span><span class="p">(</span><span class="nx">cols</span><span class="p">[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">diags1</span><span class="p">[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">diags2</span><span class="p">[</span><span class="nx">diag2</span><span class="p">]))</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-5-23" name="__codelineno-5-23" href="#__codelineno-5-23"></a><span class="w"> </span><span class="c1">// 尝试:将皇后放置在该格子</span>
<a id="__codelineno-5-24" name="__codelineno-5-24" href="#__codelineno-5-24"></a><span class="w"> </span><span class="nx">state</span><span class="p">[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s1">&#39;Q&#39;</span><span class="p">;</span>
<a id="__codelineno-5-25" name="__codelineno-5-25" href="#__codelineno-5-25"></a><span class="w"> </span><span class="nx">cols</span><span class="p">[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags1</span><span class="p">[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags2</span><span class="p">[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">true</span><span class="p">;</span>
<a id="__codelineno-5-26" name="__codelineno-5-26" href="#__codelineno-5-26"></a><span class="w"> </span><span class="c1">// 放置下一行</span>
<a id="__codelineno-5-27" name="__codelineno-5-27" href="#__codelineno-5-27"></a><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="nx">row</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="p">);</span>
<a id="__codelineno-5-28" name="__codelineno-5-28" href="#__codelineno-5-28"></a><span class="w"> </span><span class="c1">// 回退:将该格子恢复为空位</span>
<a id="__codelineno-5-29" name="__codelineno-5-29" href="#__codelineno-5-29"></a><span class="w"> </span><span class="nx">state</span><span class="p">[</span><span class="nx">row</span><span class="p">][</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="s1">&#39;#&#39;</span><span class="p">;</span>
<a id="__codelineno-5-30" name="__codelineno-5-30" href="#__codelineno-5-30"></a><span class="w"> </span><span class="nx">cols</span><span class="p">[</span><span class="nx">col</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags1</span><span class="p">[</span><span class="nx">diag1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">diags2</span><span class="p">[</span><span class="nx">diag2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="kc">false</span><span class="p">;</span>
<a id="__codelineno-5-31" name="__codelineno-5-31" href="#__codelineno-5-31"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-5-32" name="__codelineno-5-32" href="#__codelineno-5-32"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-5-33" name="__codelineno-5-33" href="#__codelineno-5-33"></a><span class="p">}</span>
<a id="__codelineno-5-34" name="__codelineno-5-34" href="#__codelineno-5-34"></a>
<a id="__codelineno-5-35" name="__codelineno-5-35" href="#__codelineno-5-35"></a><span class="cm">/* 求解 N 皇后 */</span>
<a id="__codelineno-5-36" name="__codelineno-5-36" href="#__codelineno-5-36"></a><span class="kd">function</span><span class="w"> </span><span class="nx">nQueens</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">string</span><span class="p">[][][]</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-5-37" name="__codelineno-5-37" href="#__codelineno-5-37"></a><span class="w"> </span><span class="c1">// 初始化 n*n 大小的棋盘,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-5-38" name="__codelineno-5-38" href="#__codelineno-5-38"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">state</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="kt">n</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=&gt;</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="s1">&#39;#&#39;</span><span class="p">));</span>
<a id="__codelineno-5-39" name="__codelineno-5-39" href="#__codelineno-5-39"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">cols</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录列是否有皇后</span>
<a id="__codelineno-5-40" name="__codelineno-5-40" href="#__codelineno-5-40"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diags1</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="mf">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录主对角线是否有皇后</span>
<a id="__codelineno-5-41" name="__codelineno-5-41" href="#__codelineno-5-41"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">diags2</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="mf">2</span><span class="w"> </span><span class="o">*</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="kc">false</span><span class="p">);</span><span class="w"> </span><span class="c1">// 记录副对角线是否有皇后</span>
<a id="__codelineno-5-42" name="__codelineno-5-42" href="#__codelineno-5-42"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">res</span><span class="o">:</span><span class="w"> </span><span class="kt">string</span><span class="p">[][][]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="p">[];</span>
<a id="__codelineno-5-43" name="__codelineno-5-43" href="#__codelineno-5-43"></a>
<a id="__codelineno-5-44" name="__codelineno-5-44" href="#__codelineno-5-44"></a><span class="w"> </span><span class="nx">backtrack</span><span class="p">(</span><span class="mf">0</span><span class="p">,</span><span class="w"> </span><span class="nx">n</span><span class="p">,</span><span class="w"> </span><span class="nx">state</span><span class="p">,</span><span class="w"> </span><span class="nx">res</span><span class="p">,</span><span class="w"> </span><span class="nx">cols</span><span class="p">,</span><span class="w"> </span><span class="nx">diags1</span><span class="p">,</span><span class="w"> </span><span class="nx">diags2</span><span class="p">);</span>
<a id="__codelineno-5-45" name="__codelineno-5-45" href="#__codelineno-5-45"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">res</span><span class="p">;</span>
<a id="__codelineno-5-46" name="__codelineno-5-46" href="#__codelineno-5-46"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
@ -2098,9 +2253,49 @@
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">n_queens.swift</span><pre><span></span><code><a id="__codelineno-8-1" name="__codelineno-8-1" href="#__codelineno-8-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="n">backtrack</span><span class="p">}</span>
<a id="__codelineno-8-2" name="__codelineno-8-2" href="#__codelineno-8-2"></a>
<a id="__codelineno-8-3" name="__codelineno-8-3" href="#__codelineno-8-3"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="kd">func</span><span class="p">]{</span><span class="n">nQueens</span><span class="p">}</span>
<div class="highlight"><span class="filename">n_queens.swift</span><pre><span></span><code><a id="__codelineno-8-1" name="__codelineno-8-1" href="#__codelineno-8-1"></a><span class="cm">/* 回溯算法N 皇后 */</span>
<a id="__codelineno-8-2" name="__codelineno-8-2" href="#__codelineno-8-2"></a><span class="kd">func</span> <span class="nf">backtrack</span><span class="p">(</span><span class="n">row</span><span class="p">:</span> <span class="nb">Int</span><span class="p">,</span> <span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">,</span> <span class="n">state</span><span class="p">:</span> <span class="kr">inout</span> <span class="p">[[</span><span class="nb">String</span><span class="p">]],</span> <span class="n">res</span><span class="p">:</span> <span class="kr">inout</span> <span class="p">[[[</span><span class="nb">String</span><span class="p">]]],</span> <span class="n">cols</span><span class="p">:</span> <span class="kr">inout</span> <span class="p">[</span><span class="nb">Bool</span><span class="p">],</span> <span class="n">diags1</span><span class="p">:</span> <span class="kr">inout</span> <span class="p">[</span><span class="nb">Bool</span><span class="p">],</span> <span class="n">diags2</span><span class="p">:</span> <span class="kr">inout</span> <span class="p">[</span><span class="nb">Bool</span><span class="p">])</span> <span class="p">{</span>
<a id="__codelineno-8-3" name="__codelineno-8-3" href="#__codelineno-8-3"></a> <span class="c1">// 当放置完所有行时,记录解</span>
<a id="__codelineno-8-4" name="__codelineno-8-4" href="#__codelineno-8-4"></a> <span class="k">if</span> <span class="n">row</span> <span class="p">==</span> <span class="n">n</span> <span class="p">{</span>
<a id="__codelineno-8-5" name="__codelineno-8-5" href="#__codelineno-8-5"></a> <span class="n">res</span><span class="p">.</span><span class="n">append</span><span class="p">(</span><span class="n">state</span><span class="p">)</span>
<a id="__codelineno-8-6" name="__codelineno-8-6" href="#__codelineno-8-6"></a> <span class="k">return</span>
<a id="__codelineno-8-7" name="__codelineno-8-7" href="#__codelineno-8-7"></a> <span class="p">}</span>
<a id="__codelineno-8-8" name="__codelineno-8-8" href="#__codelineno-8-8"></a> <span class="c1">// 遍历所有列</span>
<a id="__codelineno-8-9" name="__codelineno-8-9" href="#__codelineno-8-9"></a> <span class="k">for</span> <span class="n">col</span> <span class="k">in</span> <span class="mi">0</span> <span class="p">..</span><span class="o">&lt;</span> <span class="n">n</span> <span class="p">{</span>
<a id="__codelineno-8-10" name="__codelineno-8-10" href="#__codelineno-8-10"></a> <span class="c1">// 计算该格子对应的主对角线和副对角线</span>
<a id="__codelineno-8-11" name="__codelineno-8-11" href="#__codelineno-8-11"></a> <span class="kd">let</span> <span class="nv">diag1</span> <span class="p">=</span> <span class="n">row</span> <span class="o">-</span> <span class="n">col</span> <span class="o">+</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span>
<a id="__codelineno-8-12" name="__codelineno-8-12" href="#__codelineno-8-12"></a> <span class="kd">let</span> <span class="nv">diag2</span> <span class="p">=</span> <span class="n">row</span> <span class="o">+</span> <span class="n">col</span>
<a id="__codelineno-8-13" name="__codelineno-8-13" href="#__codelineno-8-13"></a> <span class="c1">// 剪枝:不允许该格子所在 (列 或 主对角线 或 副对角线) 包含皇后</span>
<a id="__codelineno-8-14" name="__codelineno-8-14" href="#__codelineno-8-14"></a> <span class="k">if</span> <span class="o">!</span><span class="p">(</span><span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span> <span class="o">||</span> <span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span> <span class="o">||</span> <span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">])</span> <span class="p">{</span>
<a id="__codelineno-8-15" name="__codelineno-8-15" href="#__codelineno-8-15"></a> <span class="c1">// 尝试:将皇后放置在该格子</span>
<a id="__codelineno-8-16" name="__codelineno-8-16" href="#__codelineno-8-16"></a> <span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span> <span class="p">=</span> <span class="s">&quot;Q&quot;</span>
<a id="__codelineno-8-17" name="__codelineno-8-17" href="#__codelineno-8-17"></a> <span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span> <span class="p">=</span> <span class="kc">true</span>
<a id="__codelineno-8-18" name="__codelineno-8-18" href="#__codelineno-8-18"></a> <span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span> <span class="p">=</span> <span class="kc">true</span>
<a id="__codelineno-8-19" name="__codelineno-8-19" href="#__codelineno-8-19"></a> <span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span> <span class="p">=</span> <span class="kc">true</span>
<a id="__codelineno-8-20" name="__codelineno-8-20" href="#__codelineno-8-20"></a> <span class="c1">// 放置下一行</span>
<a id="__codelineno-8-21" name="__codelineno-8-21" href="#__codelineno-8-21"></a> <span class="n">backtrack</span><span class="p">(</span><span class="n">row</span><span class="p">:</span> <span class="n">row</span> <span class="o">+</span> <span class="mi">1</span><span class="p">,</span> <span class="n">n</span><span class="p">:</span> <span class="n">n</span><span class="p">,</span> <span class="n">state</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">state</span><span class="p">,</span> <span class="n">res</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">res</span><span class="p">,</span> <span class="n">cols</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">cols</span><span class="p">,</span> <span class="n">diags1</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">diags1</span><span class="p">,</span> <span class="n">diags2</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">diags2</span><span class="p">)</span>
<a id="__codelineno-8-22" name="__codelineno-8-22" href="#__codelineno-8-22"></a> <span class="c1">// 回退:将该格子恢复为空位</span>
<a id="__codelineno-8-23" name="__codelineno-8-23" href="#__codelineno-8-23"></a> <span class="n">state</span><span class="p">[</span><span class="n">row</span><span class="p">][</span><span class="n">col</span><span class="p">]</span> <span class="p">=</span> <span class="s">&quot;#&quot;</span>
<a id="__codelineno-8-24" name="__codelineno-8-24" href="#__codelineno-8-24"></a> <span class="n">cols</span><span class="p">[</span><span class="n">col</span><span class="p">]</span> <span class="p">=</span> <span class="kc">false</span>
<a id="__codelineno-8-25" name="__codelineno-8-25" href="#__codelineno-8-25"></a> <span class="n">diags1</span><span class="p">[</span><span class="n">diag1</span><span class="p">]</span> <span class="p">=</span> <span class="kc">false</span>
<a id="__codelineno-8-26" name="__codelineno-8-26" href="#__codelineno-8-26"></a> <span class="n">diags2</span><span class="p">[</span><span class="n">diag2</span><span class="p">]</span> <span class="p">=</span> <span class="kc">false</span>
<a id="__codelineno-8-27" name="__codelineno-8-27" href="#__codelineno-8-27"></a> <span class="p">}</span>
<a id="__codelineno-8-28" name="__codelineno-8-28" href="#__codelineno-8-28"></a> <span class="p">}</span>
<a id="__codelineno-8-29" name="__codelineno-8-29" href="#__codelineno-8-29"></a><span class="p">}</span>
<a id="__codelineno-8-30" name="__codelineno-8-30" href="#__codelineno-8-30"></a>
<a id="__codelineno-8-31" name="__codelineno-8-31" href="#__codelineno-8-31"></a><span class="cm">/* 求解 N 皇后 */</span>
<a id="__codelineno-8-32" name="__codelineno-8-32" href="#__codelineno-8-32"></a><span class="kd">func</span> <span class="nf">nQueens</span><span class="p">(</span><span class="n">n</span><span class="p">:</span> <span class="nb">Int</span><span class="p">)</span> <span class="p">-&gt;</span> <span class="p">[[[</span><span class="nb">String</span><span class="p">]]]</span> <span class="p">{</span>
<a id="__codelineno-8-33" name="__codelineno-8-33" href="#__codelineno-8-33"></a> <span class="c1">// 初始化 n*n 大小的棋盘,其中 &#39;Q&#39; 代表皇后,&#39;#&#39; 代表空位</span>
<a id="__codelineno-8-34" name="__codelineno-8-34" href="#__codelineno-8-34"></a> <span class="kd">var</span> <span class="nv">state</span> <span class="p">=</span> <span class="nb">Array</span><span class="p">(</span><span class="n">repeating</span><span class="p">:</span> <span class="nb">Array</span><span class="p">(</span><span class="n">repeating</span><span class="p">:</span> <span class="s">&quot;#&quot;</span><span class="p">,</span> <span class="bp">count</span><span class="p">:</span> <span class="n">n</span><span class="p">),</span> <span class="bp">count</span><span class="p">:</span> <span class="n">n</span><span class="p">)</span>
<a id="__codelineno-8-35" name="__codelineno-8-35" href="#__codelineno-8-35"></a> <span class="kd">var</span> <span class="nv">cols</span> <span class="p">=</span> <span class="nb">Array</span><span class="p">(</span><span class="n">repeating</span><span class="p">:</span> <span class="kc">false</span><span class="p">,</span> <span class="bp">count</span><span class="p">:</span> <span class="n">n</span><span class="p">)</span> <span class="c1">// 记录列是否有皇后</span>
<a id="__codelineno-8-36" name="__codelineno-8-36" href="#__codelineno-8-36"></a> <span class="kd">var</span> <span class="nv">diags1</span> <span class="p">=</span> <span class="nb">Array</span><span class="p">(</span><span class="n">repeating</span><span class="p">:</span> <span class="kc">false</span><span class="p">,</span> <span class="bp">count</span><span class="p">:</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="c1">// 记录主对角线是否有皇后</span>
<a id="__codelineno-8-37" name="__codelineno-8-37" href="#__codelineno-8-37"></a> <span class="kd">var</span> <span class="nv">diags2</span> <span class="p">=</span> <span class="nb">Array</span><span class="p">(</span><span class="n">repeating</span><span class="p">:</span> <span class="kc">false</span><span class="p">,</span> <span class="bp">count</span><span class="p">:</span> <span class="mi">2</span> <span class="o">*</span> <span class="n">n</span> <span class="o">-</span> <span class="mi">1</span><span class="p">)</span> <span class="c1">// 记录副对角线是否有皇后</span>
<a id="__codelineno-8-38" name="__codelineno-8-38" href="#__codelineno-8-38"></a> <span class="kd">var</span> <span class="nv">res</span><span class="p">:</span> <span class="p">[[[</span><span class="nb">String</span><span class="p">]]]</span> <span class="p">=</span> <span class="p">[]</span>
<a id="__codelineno-8-39" name="__codelineno-8-39" href="#__codelineno-8-39"></a>
<a id="__codelineno-8-40" name="__codelineno-8-40" href="#__codelineno-8-40"></a> <span class="n">backtrack</span><span class="p">(</span><span class="n">row</span><span class="p">:</span> <span class="mi">0</span><span class="p">,</span> <span class="n">n</span><span class="p">:</span> <span class="n">n</span><span class="p">,</span> <span class="n">state</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">state</span><span class="p">,</span> <span class="n">res</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">res</span><span class="p">,</span> <span class="n">cols</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">cols</span><span class="p">,</span> <span class="n">diags1</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">diags1</span><span class="p">,</span> <span class="n">diags2</span><span class="p">:</span> <span class="p">&amp;</span><span class="n">diags2</span><span class="p">)</span>
<a id="__codelineno-8-41" name="__codelineno-8-41" href="#__codelineno-8-41"></a>
<a id="__codelineno-8-42" name="__codelineno-8-42" href="#__codelineno-8-42"></a> <span class="k">return</span> <span class="n">res</span>
<a id="__codelineno-8-43" name="__codelineno-8-43" href="#__codelineno-8-43"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">