mirror of
https://github.com/krahets/hello-algo.git
synced 2025-07-25 11:13:38 +08:00
build
This commit is contained in:
@ -6,13 +6,13 @@ comments: true
|
||||
|
||||
!!! note
|
||||
|
||||
在本书中,标题带有的 * 符号的是选读章节。如果你时间有限或感到理解困难,可以先跳过,等学完必读章节后再单独攻克。
|
||||
在本书中,标题带有 * 符号的是选读章节。如果你时间有限或感到理解困难,可以先跳过,等学完必读章节后再单独攻克。
|
||||
|
||||
## 3.3.1 整数编码
|
||||
|
||||
在上一节的表格中我们发现,所有整数类型能够表示的负数都比正数多一个,例如 `byte` 的取值范围是 $[-128, 127]$ 。这个现象比较反直觉,它的内在原因涉及到原码、反码、补码的相关知识。
|
||||
在上一节的表格中我们发现,所有整数类型能够表示的负数都比正数多一个,例如 `byte` 的取值范围是 $[-128, 127]$ 。这个现象比较反直觉,它的内在原因涉及原码、反码、补码的相关知识。
|
||||
|
||||
首先需要指出,**数字是以“补码”的形式存储在计算机中的**。在分析这样做的原因之前,我们首先给出三者的定义。
|
||||
首先需要指出,**数字是以“补码”的形式存储在计算机中的**。在分析这样做的原因之前,首先给出三者的定义。
|
||||
|
||||
- **原码**:我们将数字的二进制表示的最高位视为符号位,其中 $0$ 表示正数,$1$ 表示负数,其余位表示数字的值。
|
||||
- **反码**:正数的反码与其原码相同,负数的反码是对其原码除符号位外的所有位取反。
|
||||
@ -35,7 +35,7 @@ $$
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
为了解决此问题,计算机引入了「反码 1's complement」。如果我们先将原码转换为反码,并在反码下计算 $1 + (-2)$ ,最后将结果从反码转化回原码,则可得到正确结果 $-1$ 。
|
||||
为了解决此问题,计算机引入了「反码 1's complement」。如果我们先将原码转换为反码,并在反码下计算 $1 + (-2)$ ,最后将结果从反码转换回原码,则可得到正确结果 $-1$ 。
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
@ -48,7 +48,7 @@ $$
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
另一方面,**数字零的原码有 $+0$ 和 $-0$ 两种表示方式**。这意味着数字零对应着两个不同的二进制编码,其可能会带来歧义。比如在条件判断中,如果没有区分正零和负零,则可能会导致判断结果出错。而如果我们想要处理正零和负零歧义,则需要引入额外的判断操作,其可能会降低计算机的运算效率。
|
||||
另一方面,**数字零的原码有 $+0$ 和 $-0$ 两种表示方式**。这意味着数字零对应两个不同的二进制编码,这可能会带来歧义。比如在条件判断中,如果没有区分正零和负零,则可能会导致判断结果出错。而如果我们想处理正零和负零歧义,则需要引入额外的判断操作,这可能会降低计算机的运算效率。
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
@ -69,7 +69,7 @@ $$
|
||||
|
||||
在负零的反码基础上加 $1$ 会产生进位,但 `byte` 类型的长度只有 8 位,因此溢出到第 9 位的 $1$ 会被舍弃。也就是说,**负零的补码为 $0000 \; 0000$ ,与正零的补码相同**。这意味着在补码表示中只存在一个零,正负零歧义从而得到解决。
|
||||
|
||||
还剩余最后一个疑惑:`byte` 类型的取值范围是 $[-128, 127]$ ,多出来的一个负数 $-128$ 是如何得到的呢?我们注意到,区间 $[-127, +127]$ 内的所有整数都有对应的原码、反码和补码,并且原码和补码之间是可以互相转换的。
|
||||
还剩最后一个疑惑:`byte` 类型的取值范围是 $[-128, 127]$ ,多出来的一个负数 $-128$ 是如何得到的呢?我们注意到,区间 $[-127, +127]$ 内的所有整数都有对应的原码、反码和补码,并且原码和补码之间可以互相转换。
|
||||
|
||||
然而,**补码 $1000 \; 0000$ 是一个例外,它并没有对应的原码**。根据转换方法,我们得到该补码的原码为 $0000 \; 0000$ 。这显然是矛盾的,因为该原码表示数字 $0$ ,它的补码应该是自身。计算机规定这个特殊的补码 $1000 \; 0000$ 代表 $-128$ 。实际上,$(-1) + (-127)$ 在补码下的计算结果就是 $-128$ 。
|
||||
|
||||
@ -84,13 +84,13 @@ $$
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
你可能已经发现,上述的所有计算都是加法运算。这暗示着一个重要事实:**计算机内部的硬件电路主要是基于加法运算设计的**。这是因为加法运算相对于其他运算(比如乘法、除法和减法)来说,硬件实现起来更简单,更容易进行并行化处理,运算速度更快。
|
||||
你可能已经发现了,上述所有计算都是加法运算。这暗示着一个重要事实:**计算机内部的硬件电路主要是基于加法运算设计的**。这是因为加法运算相对于其他运算(比如乘法、除法和减法)来说,硬件实现起来更简单,更容易进行并行化处理,运算速度更快。
|
||||
|
||||
请注意,这并不意味着计算机只能做加法。**通过将加法与一些基本逻辑运算结合,计算机能够实现各种其他的数学运算**。例如,计算减法 $a - b$ 可以转换为计算加法 $a + (-b)$ ;计算乘法和除法可以转换为计算多次加法或减法。
|
||||
|
||||
现在我们可以总结出计算机使用补码的原因:基于补码表示,计算机可以用同样的电路和操作来处理正数和负数的加法,不需要设计特殊的硬件电路来处理减法,并且无须特别处理正负零的歧义问题。这大大简化了硬件设计,提高了运算效率。
|
||||
|
||||
补码的设计非常精妙,因篇幅关系我们就先介绍到这里,建议有兴趣的读者进一步深度了解。
|
||||
补码的设计非常精妙,因篇幅关系我们就先介绍到这里,建议有兴趣的读者进一步深入了解。
|
||||
|
||||
## 3.3.2 浮点数编码
|
||||
|
||||
@ -108,19 +108,19 @@ $$
|
||||
- 指数位 $\mathrm{E}$ :占 8 bits ,对应 $b_{30} b_{29} \ldots b_{23}$ 。
|
||||
- 分数位 $\mathrm{N}$ :占 23 bits ,对应 $b_{22} b_{21} \ldots b_0$ 。
|
||||
|
||||
二进制数 `float` 对应的值的计算方法:
|
||||
二进制数 `float` 对应值的计算方法为:
|
||||
|
||||
$$
|
||||
\text {val} = (-1)^{b_{31}} \times 2^{\left(b_{30} b_{29} \ldots b_{23}\right)_2-127} \times\left(1 . b_{22} b_{21} \ldots b_0\right)_2
|
||||
$$
|
||||
|
||||
转化到十进制下的计算公式:
|
||||
转化到十进制下的计算公式为:
|
||||
|
||||
$$
|
||||
\text {val}=(-1)^{\mathrm{S}} \times 2^{\mathrm{E} -127} \times (1 + \mathrm{N})
|
||||
$$
|
||||
|
||||
其中各项的取值范围:
|
||||
其中各项的取值范围为:
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
@ -159,4 +159,4 @@ $$
|
||||
|
||||
值得说明的是,次正规数显著提升了浮点数的精度。最小正正规数为 $2^{-126}$ ,最小正次正规数为 $2^{-126} \times 2^{-23}$ 。
|
||||
|
||||
双精度 `double` 也采用类似 `float` 的表示方法,在此不做赘述。
|
||||
双精度 `double` 也采用类似于 `float` 的表示方法,在此不做赘述。
|
||||
|
Reference in New Issue
Block a user