mirror of
https://github.com/krahets/hello-algo.git
synced 2025-07-28 04:42:48 +08:00
build
This commit is contained in:
@ -1172,8 +1172,8 @@ The following code implements a binary tree based on array representation, inclu
|
||||
=== "Kotlin"
|
||||
|
||||
```kotlin title="array_binary_tree.kt"
|
||||
/* 数组表示下的二叉树类 */
|
||||
class ArrayBinaryTree(val tree: List<Int?>) {
|
||||
/* 构造方法 */
|
||||
class ArrayBinaryTree(val tree: MutableList<Int?>) {
|
||||
/* 列表容量 */
|
||||
fun size(): Int {
|
||||
return tree.size
|
||||
@ -1202,11 +1202,12 @@ The following code implements a binary tree based on array representation, inclu
|
||||
}
|
||||
|
||||
/* 层序遍历 */
|
||||
fun levelOrder(): List<Int?> {
|
||||
val res = ArrayList<Int?>()
|
||||
fun levelOrder(): MutableList<Int?> {
|
||||
val res = mutableListOf<Int?>()
|
||||
// 直接遍历数组
|
||||
for (i in 0..<size()) {
|
||||
if (value(i) != null) res.add(value(i))
|
||||
if (value(i) != null)
|
||||
res.add(value(i))
|
||||
}
|
||||
return res
|
||||
}
|
||||
@ -1214,34 +1215,38 @@ The following code implements a binary tree based on array representation, inclu
|
||||
/* 深度优先遍历 */
|
||||
fun dfs(i: Int, order: String, res: MutableList<Int?>) {
|
||||
// 若为空位,则返回
|
||||
if (value(i) == null) return
|
||||
if (value(i) == null)
|
||||
return
|
||||
// 前序遍历
|
||||
if ("pre" == order) res.add(value(i))
|
||||
if ("pre" == order)
|
||||
res.add(value(i))
|
||||
dfs(left(i), order, res)
|
||||
// 中序遍历
|
||||
if ("in" == order) res.add(value(i))
|
||||
if ("in" == order)
|
||||
res.add(value(i))
|
||||
dfs(right(i), order, res)
|
||||
// 后序遍历
|
||||
if ("post" == order) res.add(value(i))
|
||||
if ("post" == order)
|
||||
res.add(value(i))
|
||||
}
|
||||
|
||||
/* 前序遍历 */
|
||||
fun preOrder(): List<Int?> {
|
||||
val res = ArrayList<Int?>()
|
||||
fun preOrder(): MutableList<Int?> {
|
||||
val res = mutableListOf<Int?>()
|
||||
dfs(0, "pre", res)
|
||||
return res
|
||||
}
|
||||
|
||||
/* 中序遍历 */
|
||||
fun inOrder(): List<Int?> {
|
||||
val res = ArrayList<Int?>()
|
||||
fun inOrder(): MutableList<Int?> {
|
||||
val res = mutableListOf<Int?>()
|
||||
dfs(0, "in", res)
|
||||
return res
|
||||
}
|
||||
|
||||
/* 后序遍历 */
|
||||
fun postOrder(): List<Int?> {
|
||||
val res = ArrayList<Int?>()
|
||||
fun postOrder(): MutableList<Int?> {
|
||||
val res = mutableListOf<Int?>()
|
||||
dfs(0, "post", res)
|
||||
return res
|
||||
}
|
||||
|
@ -448,7 +448,7 @@ The "node height" refers to the distance from that node to its farthest leaf nod
|
||||
/* 更新节点高度 */
|
||||
fun updateHeight(node: TreeNode?) {
|
||||
// 节点高度等于最高子树高度 + 1
|
||||
node?.height = (max(height(node?.left).toDouble(), height(node?.right).toDouble()) + 1).toInt()
|
||||
node?.height = max(height(node?.left), height(node?.right)) + 1
|
||||
}
|
||||
```
|
||||
|
||||
@ -2022,10 +2022,12 @@ The node insertion operation in AVL trees is similar to that in binary search tr
|
||||
return TreeNode(value)
|
||||
var node = n
|
||||
/* 1. 查找插入位置并插入节点 */
|
||||
if (value < node.value) node.left = insertHelper(node.left, value)
|
||||
else if (value > node.value) node.right = insertHelper(node.right, value)
|
||||
else return node // 重复节点不插入,直接返回
|
||||
|
||||
if (value < node.value)
|
||||
node.left = insertHelper(node.left, value)
|
||||
else if (value > node.value)
|
||||
node.right = insertHelper(node.right, value)
|
||||
else
|
||||
return node // 重复节点不插入,直接返回
|
||||
updateHeight(node) // 更新节点高度
|
||||
/* 2. 执行旋转操作,使该子树重新恢复平衡 */
|
||||
node = rotate(node)
|
||||
@ -2601,14 +2603,22 @@ Similarly, based on the method of removing nodes in binary search trees, rotatio
|
||||
fun removeHelper(n: TreeNode?, value: Int): TreeNode? {
|
||||
var node = n ?: return null
|
||||
/* 1. 查找节点并删除 */
|
||||
if (value < node.value) node.left = removeHelper(node.left, value)
|
||||
else if (value > node.value) node.right = removeHelper(node.right, value)
|
||||
if (value < node.value)
|
||||
node.left = removeHelper(node.left, value)
|
||||
else if (value > node.value)
|
||||
node.right = removeHelper(node.right, value)
|
||||
else {
|
||||
if (node.left == null || node.right == null) {
|
||||
val child = if (node.left != null) node.left else node.right
|
||||
val child = if (node.left != null)
|
||||
node.left
|
||||
else
|
||||
node.right
|
||||
// 子节点数量 = 0 ,直接删除 node 并返回
|
||||
if (child == null) return null
|
||||
else node = child
|
||||
if (child == null)
|
||||
return null
|
||||
// 子节点数量 = 1 ,直接删除 node
|
||||
else
|
||||
node = child
|
||||
} else {
|
||||
// 子节点数量 = 2 ,则将中序遍历的下个节点删除,并用该节点替换当前节点
|
||||
var temp = node.right
|
||||
|
@ -299,11 +299,14 @@ The search operation in a binary search tree works on the same principle as the
|
||||
// 循环查找,越过叶节点后跳出
|
||||
while (cur != null) {
|
||||
// 目标节点在 cur 的右子树中
|
||||
cur = if (cur.value < num) cur.right
|
||||
cur = if (cur.value < num)
|
||||
cur.right
|
||||
// 目标节点在 cur 的左子树中
|
||||
else if (cur.value > num) cur.left
|
||||
else if (cur.value > num)
|
||||
cur.left
|
||||
// 找到目标节点,跳出循环
|
||||
else break
|
||||
else
|
||||
break
|
||||
}
|
||||
// 返回目标节点
|
||||
return cur
|
||||
@ -748,17 +751,22 @@ In the code implementation, note the following two points.
|
||||
// 循环查找,越过叶节点后跳出
|
||||
while (cur != null) {
|
||||
// 找到重复节点,直接返回
|
||||
if (cur.value == num) return
|
||||
if (cur.value == num)
|
||||
return
|
||||
pre = cur
|
||||
// 插入位置在 cur 的右子树中
|
||||
cur = if (cur.value < num) cur.right
|
||||
cur = if (cur.value < num)
|
||||
cur.right
|
||||
// 插入位置在 cur 的左子树中
|
||||
else cur.left
|
||||
else
|
||||
cur.left
|
||||
}
|
||||
// 插入节点
|
||||
val node = TreeNode(num)
|
||||
if (pre?.value!! < num) pre.right = node
|
||||
else pre.left = node
|
||||
if (pre?.value!! < num)
|
||||
pre.right = node
|
||||
else
|
||||
pre.left = node
|
||||
}
|
||||
```
|
||||
|
||||
@ -1482,29 +1490,39 @@ The operation of removing a node also uses $O(\log n)$ time, where finding the n
|
||||
/* 删除节点 */
|
||||
fun remove(num: Int) {
|
||||
// 若树为空,直接提前返回
|
||||
if (root == null) return
|
||||
if (root == null)
|
||||
return
|
||||
var cur = root
|
||||
var pre: TreeNode? = null
|
||||
// 循环查找,越过叶节点后跳出
|
||||
while (cur != null) {
|
||||
// 找到待删除节点,跳出循环
|
||||
if (cur.value == num) break
|
||||
if (cur.value == num)
|
||||
break
|
||||
pre = cur
|
||||
// 待删除节点在 cur 的右子树中
|
||||
cur = if (cur.value < num) cur.right
|
||||
cur = if (cur.value < num)
|
||||
cur.right
|
||||
// 待删除节点在 cur 的左子树中
|
||||
else cur.left
|
||||
else
|
||||
cur.left
|
||||
}
|
||||
// 若无待删除节点,则直接返回
|
||||
if (cur == null) return
|
||||
if (cur == null)
|
||||
return
|
||||
// 子节点数量 = 0 or 1
|
||||
if (cur.left == null || cur.right == null) {
|
||||
// 当子节点数量 = 0 / 1 时, child = null / 该子节点
|
||||
val child = if (cur.left != null) cur.left else cur.right
|
||||
val child = if (cur.left != null)
|
||||
cur.left
|
||||
else
|
||||
cur.right
|
||||
// 删除节点 cur
|
||||
if (cur != root) {
|
||||
if (pre!!.left == cur) pre.left = child
|
||||
else pre.right = child
|
||||
if (pre!!.left == cur)
|
||||
pre.left = child
|
||||
else
|
||||
pre.right = child
|
||||
} else {
|
||||
// 若删除节点为根节点,则重新指定根节点
|
||||
root = child
|
||||
|
@ -229,7 +229,7 @@ Breadth-first traversal is usually implemented with the help of a "queue". The q
|
||||
fn level_order(root: &Rc<RefCell<TreeNode>>) -> Vec<i32> {
|
||||
// 初始化队列,加入根节点
|
||||
let mut que = VecDeque::new();
|
||||
que.push_back(Rc::clone(&root));
|
||||
que.push_back(root.clone());
|
||||
// 初始化一个列表,用于保存遍历序列
|
||||
let mut vec = Vec::new();
|
||||
|
||||
@ -237,10 +237,10 @@ Breadth-first traversal is usually implemented with the help of a "queue". The q
|
||||
// 队列出队
|
||||
vec.push(node.borrow().val); // 保存节点值
|
||||
if let Some(left) = node.borrow().left.as_ref() {
|
||||
que.push_back(Rc::clone(left)); // 左子节点入队
|
||||
que.push_back(left.clone()); // 左子节点入队
|
||||
}
|
||||
if let Some(right) = node.borrow().right.as_ref() {
|
||||
que.push_back(Rc::clone(right)); // 右子节点入队
|
||||
que.push_back(right.clone()); // 右子节点入队
|
||||
};
|
||||
}
|
||||
vec
|
||||
@ -302,13 +302,14 @@ Breadth-first traversal is usually implemented with the help of a "queue". The q
|
||||
val queue = LinkedList<TreeNode?>()
|
||||
queue.add(root)
|
||||
// 初始化一个列表,用于保存遍历序列
|
||||
val list = ArrayList<Int>()
|
||||
while (!queue.isEmpty()) {
|
||||
val node = queue.poll() // 队列出队
|
||||
list.add(node?.value!!) // 保存节点值
|
||||
if (node.left != null) queue.offer(node.left) // 左子节点入队
|
||||
|
||||
if (node.right != null) queue.offer(node.right) // 右子节点入队
|
||||
val list = mutableListOf<Int>()
|
||||
while (queue.isNotEmpty()) {
|
||||
val node = queue.poll() // 队列出队
|
||||
list.add(node?.value!!) // 保存节点值
|
||||
if (node.left != null)
|
||||
queue.offer(node.left) // 左子节点入队
|
||||
if (node.right != null)
|
||||
queue.offer(node.right) // 右子节点入队
|
||||
}
|
||||
return list
|
||||
}
|
||||
@ -689,8 +690,8 @@ Depth-first search is usually implemented based on recursion:
|
||||
if let Some(node) = root {
|
||||
// 访问优先级:根节点 -> 左子树 -> 右子树
|
||||
result.push(node.borrow().val);
|
||||
result.append(&mut pre_order(node.borrow().left.as_ref()));
|
||||
result.append(&mut pre_order(node.borrow().right.as_ref()));
|
||||
result.extend(pre_order(node.borrow().left.as_ref()));
|
||||
result.extend(pre_order(node.borrow().right.as_ref()));
|
||||
}
|
||||
result
|
||||
}
|
||||
@ -701,9 +702,9 @@ Depth-first search is usually implemented based on recursion:
|
||||
|
||||
if let Some(node) = root {
|
||||
// 访问优先级:左子树 -> 根节点 -> 右子树
|
||||
result.append(&mut in_order(node.borrow().left.as_ref()));
|
||||
result.extend(in_order(node.borrow().left.as_ref()));
|
||||
result.push(node.borrow().val);
|
||||
result.append(&mut in_order(node.borrow().right.as_ref()));
|
||||
result.extend(in_order(node.borrow().right.as_ref()));
|
||||
}
|
||||
result
|
||||
}
|
||||
@ -714,8 +715,8 @@ Depth-first search is usually implemented based on recursion:
|
||||
|
||||
if let Some(node) = root {
|
||||
// 访问优先级:左子树 -> 右子树 -> 根节点
|
||||
result.append(&mut post_order(node.borrow().left.as_ref()));
|
||||
result.append(&mut post_order(node.borrow().right.as_ref()));
|
||||
result.extend(post_order(node.borrow().left.as_ref()));
|
||||
result.extend(post_order(node.borrow().right.as_ref()));
|
||||
result.push(node.borrow().val);
|
||||
}
|
||||
result
|
||||
|
Reference in New Issue
Block a user