feat: Add the section of Top-K problem (#551)
* Add the section of Top-K problem * Update my_heap.py * Update build_heap.md * Update my_heap.py
@ -61,5 +61,6 @@ int main() {
 | 
			
		||||
    priority_queue<int, vector<int>, greater<int>> minHeap(input.begin(), input.end());
 | 
			
		||||
    cout << "输入列表并建立小顶堆后" << endl;
 | 
			
		||||
    printHeap(minHeap);
 | 
			
		||||
 | 
			
		||||
    return 0;
 | 
			
		||||
}
 | 
			
		||||
@ -151,4 +151,6 @@ int main() {
 | 
			
		||||
    /* 判断堆是否为空 */
 | 
			
		||||
    bool isEmpty = maxHeap.empty();
 | 
			
		||||
    cout << "\n堆是否为空 " << isEmpty << endl;
 | 
			
		||||
 | 
			
		||||
    return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										37
									
								
								codes/cpp/chapter_heap/top_k.cpp
									
									
									
									
									
										Normal file
									
								
							
							
						
						@ -0,0 +1,37 @@
 | 
			
		||||
/**
 | 
			
		||||
 * File: top_k.cpp
 | 
			
		||||
 * Created Time: 2023-06-12
 | 
			
		||||
 * Author: Krahets (krahets@163.com)
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
#include "../utils/common.hpp"
 | 
			
		||||
 | 
			
		||||
/* 基于堆查找数组中最大的 k 个元素 */
 | 
			
		||||
priority_queue<int, vector<int>, greater<int>> topKHeap(vector<int> &nums, int k) {
 | 
			
		||||
    priority_queue<int, vector<int>, greater<int>> heap;
 | 
			
		||||
    // 将数组的前 k 个元素入堆
 | 
			
		||||
    for (int i = 0; i < k; i++) {
 | 
			
		||||
        heap.push(nums[i]);
 | 
			
		||||
    }
 | 
			
		||||
    // 从第 k+1 个元素开始,保持堆的长度为 k
 | 
			
		||||
    for (int i = k; i < nums.size(); i++) {
 | 
			
		||||
        // 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
 | 
			
		||||
        if (nums[i] > heap.top()) {
 | 
			
		||||
            heap.pop();
 | 
			
		||||
            heap.push(nums[i]);
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
    return heap;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Driver Code
 | 
			
		||||
int main() {
 | 
			
		||||
    vector<int> nums = {1, 7, 6, 3, 2};
 | 
			
		||||
    int k = 3;
 | 
			
		||||
 | 
			
		||||
    priority_queue<int, vector<int>, greater<int>> res = topKHeap(nums, k);
 | 
			
		||||
    cout << "最大的 " << k << " 个元素为: ";
 | 
			
		||||
    printHeap(res);
 | 
			
		||||
 | 
			
		||||
    return 0;
 | 
			
		||||
}
 | 
			
		||||
@ -13,16 +13,6 @@
 | 
			
		||||
#include <sstream>
 | 
			
		||||
#include <string>
 | 
			
		||||
 | 
			
		||||
/* Expose the underlying storage of the priority_queue container */
 | 
			
		||||
template <typename T, typename S, typename C> S &Container(priority_queue<T, S, C> &pq) {
 | 
			
		||||
    struct HackedQueue : private priority_queue<T, S, C> {
 | 
			
		||||
        static S &Container(priority_queue<T, S, C> &pq) {
 | 
			
		||||
            return pq.*&HackedQueue::c;
 | 
			
		||||
        }
 | 
			
		||||
    };
 | 
			
		||||
    return HackedQueue::Container(pq);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* Find an element in a vector */
 | 
			
		||||
template <typename T> int vecFind(const vector<T> &vec, T ele) {
 | 
			
		||||
    int j = INT_MAX;
 | 
			
		||||
@ -217,6 +207,16 @@ template <typename TKey, typename TValue> void printHashMap(unordered_map<TKey,
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* Expose the underlying storage of the priority_queue container */
 | 
			
		||||
template <typename T, typename S, typename C> S &Container(priority_queue<T, S, C> &pq) {
 | 
			
		||||
    struct HackedQueue : private priority_queue<T, S, C> {
 | 
			
		||||
        static S &Container(priority_queue<T, S, C> &pq) {
 | 
			
		||||
            return pq.*&HackedQueue::c;
 | 
			
		||||
        }
 | 
			
		||||
    };
 | 
			
		||||
    return HackedQueue::Container(pq);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* Print a Heap (PriorityQueue) */
 | 
			
		||||
template <typename T, typename S, typename C> void printHeap(priority_queue<T, S, C> &heap) {
 | 
			
		||||
    vector<T> vec = Container(heap);
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										39
									
								
								codes/java/chapter_heap/top_k.java
									
									
									
									
									
										Normal file
									
								
							
							
						
						@ -0,0 +1,39 @@
 | 
			
		||||
/**
 | 
			
		||||
 * File: top_k.java
 | 
			
		||||
 * Created Time: 2023-06-12
 | 
			
		||||
 * Author: Krahets (krahets@163.com)
 | 
			
		||||
 */
 | 
			
		||||
 | 
			
		||||
package chapter_heap;
 | 
			
		||||
 | 
			
		||||
import utils.*;
 | 
			
		||||
import java.util.*;
 | 
			
		||||
 | 
			
		||||
public class top_k {
 | 
			
		||||
    /* 基于堆查找数组中最大的 k 个元素 */
 | 
			
		||||
    static Queue<Integer> topKHeap(int[] nums, int k) {
 | 
			
		||||
        Queue<Integer> heap = new PriorityQueue<Integer>();
 | 
			
		||||
        // 将数组的前 k 个元素入堆
 | 
			
		||||
        for (int i = 0; i < k; i++) {
 | 
			
		||||
            heap.add(nums[i]);
 | 
			
		||||
        }
 | 
			
		||||
        // 从第 k+1 个元素开始,保持堆的长度为 k
 | 
			
		||||
        for (int i = k; i < nums.length; i++) {
 | 
			
		||||
            // 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
 | 
			
		||||
            if (nums[i] > heap.peek()) {
 | 
			
		||||
                heap.poll();
 | 
			
		||||
                heap.add(nums[i]);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
        return heap;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    public static void main(String[] args) {
 | 
			
		||||
        int[] nums = { 1, 7, 6, 3, 2 };
 | 
			
		||||
        int k = 3;
 | 
			
		||||
 | 
			
		||||
        Queue<Integer> res = topKHeap(nums, k);
 | 
			
		||||
        System.out.println("最大的 " + k + " 个元素为");
 | 
			
		||||
        PrintUtil.printHeap(res);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
@ -14,7 +14,7 @@ class MaxHeap:
 | 
			
		||||
    """大顶堆"""
 | 
			
		||||
 | 
			
		||||
    def __init__(self, nums: list[int]):
 | 
			
		||||
        """构造方法"""
 | 
			
		||||
        """构造方法,根据输入列表建堆"""
 | 
			
		||||
        # 将列表元素原封不动添加进堆
 | 
			
		||||
        self.max_heap = nums
 | 
			
		||||
        # 堆化除叶节点以外的其他所有节点
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										37
									
								
								codes/python/chapter_heap/top_k.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						@ -0,0 +1,37 @@
 | 
			
		||||
"""
 | 
			
		||||
File: top_k.py
 | 
			
		||||
Created Time: 2023-06-10
 | 
			
		||||
Author: Krahets (krahets@163.com)
 | 
			
		||||
"""
 | 
			
		||||
 | 
			
		||||
import sys, os.path as osp
 | 
			
		||||
 | 
			
		||||
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
 | 
			
		||||
from modules import *
 | 
			
		||||
 | 
			
		||||
import heapq
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def top_k_heap(nums: list[int], k: int) -> list[int]:
 | 
			
		||||
    """基于堆查找数组中最大的 k 个元素"""
 | 
			
		||||
    heap = []
 | 
			
		||||
    # 将数组的前 k 个元素入堆
 | 
			
		||||
    for i in range(k):
 | 
			
		||||
        heapq.heappush(heap, nums[i])
 | 
			
		||||
    # 从第 k+1 个元素开始,保持堆的长度为 k
 | 
			
		||||
    for i in range(k, len(nums)):
 | 
			
		||||
        # 若当前元素大于堆顶元素,则将堆顶元素出堆、当前元素入堆
 | 
			
		||||
        if nums[i] > heap[0]:
 | 
			
		||||
            heapq.heappop(heap)
 | 
			
		||||
            heapq.heappush(heap, nums[i])
 | 
			
		||||
    return heap
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
"""Driver Code"""
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
    nums = [1, 7, 6, 3, 2]
 | 
			
		||||
    k = 3
 | 
			
		||||
 | 
			
		||||
    res = top_k_heap(nums, k)
 | 
			
		||||
    print(f"最大的 {k} 个元素为")   
 | 
			
		||||
    print_heap(res)
 | 
			
		||||
@ -1,4 +1,4 @@
 | 
			
		||||
# 建堆操作 *
 | 
			
		||||
# 建堆操作
 | 
			
		||||
 | 
			
		||||
如果我们想要根据输入列表生成一个堆,这个过程被称为「建堆」。
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										
											BIN
										
									
								
								docs/chapter_heap/top_k.assets/top_k_heap_step1.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 46 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								docs/chapter_heap/top_k.assets/top_k_heap_step2.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 50 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								docs/chapter_heap/top_k.assets/top_k_heap_step3.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 54 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								docs/chapter_heap/top_k.assets/top_k_heap_step4.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 62 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								docs/chapter_heap/top_k.assets/top_k_heap_step5.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 63 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								docs/chapter_heap/top_k.assets/top_k_heap_step6.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 71 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								docs/chapter_heap/top_k.assets/top_k_heap_step7.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 62 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								docs/chapter_heap/top_k.assets/top_k_heap_step8.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 64 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								docs/chapter_heap/top_k.assets/top_k_heap_step9.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 53 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								docs/chapter_heap/top_k.assets/top_k_sorting.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 41 KiB  | 
							
								
								
									
										
											BIN
										
									
								
								docs/chapter_heap/top_k.assets/top_k_traversal.png
									
									
									
									
									
										Normal file
									
								
							
							
						
						| 
		 After Width: | Height: | Size: 62 KiB  | 
							
								
								
									
										133
									
								
								docs/chapter_heap/top_k.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						@ -0,0 +1,133 @@
 | 
			
		||||
# Top-K 问题
 | 
			
		||||
 | 
			
		||||
!!! question
 | 
			
		||||
 | 
			
		||||
    给定一个长度为 $n$ 无序数组 `nums` ,请返回数组中前 $k$ 大的元素。
 | 
			
		||||
 | 
			
		||||
对于该问题,我们先介绍两种思路比较直接的解法,再介绍效率更高的堆解法。
 | 
			
		||||
 | 
			
		||||
## 方法一:遍历选择
 | 
			
		||||
 | 
			
		||||
我们可以进行 $k$ 轮遍历,分别在每轮中提取第 $1$ , $2$ , $\cdots$ , $k$ 大的元素,时间复杂度为 $O(nk)$ 。
 | 
			
		||||
 | 
			
		||||
该方法只适用于 $k \ll n$ 的情况,因为当 $k$ 与 $n$ 比较接近时,其时间复杂度趋向于 $O(n^2)$ ,非常耗时。
 | 
			
		||||
 | 
			
		||||

 | 
			
		||||
 | 
			
		||||
!!! tip
 | 
			
		||||
 | 
			
		||||
    当 $k = n$ 时,我们可以得到从大到小的序列,等价于「选择排序」算法。 
 | 
			
		||||
 | 
			
		||||
## 方法二:排序
 | 
			
		||||
 | 
			
		||||
我们可以对数组 `nums` 进行排序,并返回最右边的 $k$ 个元素,时间复杂度为 $O(n \log n)$ 。
 | 
			
		||||
 | 
			
		||||
显然,该方法“超额”完成任务了,因为我们只需要找出最大的 $k$ 个元素即可,而不需要排序其他元素。
 | 
			
		||||
 | 
			
		||||

 | 
			
		||||
 | 
			
		||||
## 方法三:堆
 | 
			
		||||
 | 
			
		||||
我们可以基于堆更加高效地解决 Top-K 问题,流程如下:
 | 
			
		||||
 | 
			
		||||
1. 初始化一个小顶堆,其堆顶元素最小;
 | 
			
		||||
2. 先将数组的前 $k$ 个元素依次入堆;
 | 
			
		||||
3. 从第 $k + 1$ 个元素开始,若当前元素大于堆顶元素,则将堆顶元素出堆,并将当前元素入堆;
 | 
			
		||||
4. 遍历完成后,堆中保存的就是最大的 $k$ 个元素;
 | 
			
		||||
 | 
			
		||||
=== "<1>"
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
=== "<2>"
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
=== "<3>"
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
=== "<4>"
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
=== "<5>"
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
=== "<6>"
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
=== "<7>"
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
=== "<8>"
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
=== "<9>"
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
总共执行了 $n$ 轮入堆和出堆,堆的最大长度为 $k$ ,因此时间复杂度为 $O(n \log k)$ 。该方法的效率很高,当 $k$ 较小时,时间复杂度趋向 $O(n)$ ;当 $k$ 较大时,时间复杂度不会超过 $O(n \log n)$ 。
 | 
			
		||||
 | 
			
		||||
另外,该方法适用于动态数据流的使用场景。在不断加入数据时,我们可以持续维护堆内的元素,从而实现最大 $k$ 个元素的动态更新。
 | 
			
		||||
 | 
			
		||||
=== "Java"
 | 
			
		||||
 | 
			
		||||
    ```java title="top_k.java"
 | 
			
		||||
    [class]{top_k}-[func]{topKHeap}
 | 
			
		||||
    ```
 | 
			
		||||
 | 
			
		||||
=== "C++"
 | 
			
		||||
 | 
			
		||||
    ```cpp title="top_k.cpp"
 | 
			
		||||
    [class]{}-[func]{topKHeap}
 | 
			
		||||
    ```
 | 
			
		||||
 | 
			
		||||
=== "Python"
 | 
			
		||||
 | 
			
		||||
    ```python title="top_k.py"
 | 
			
		||||
    [class]{}-[func]{top_k_heap}
 | 
			
		||||
    ```
 | 
			
		||||
 | 
			
		||||
=== "Go"
 | 
			
		||||
 | 
			
		||||
    ```go title="top_k.go"
 | 
			
		||||
    [class]{maxHeap}-[func]{topKHeap}
 | 
			
		||||
    ```
 | 
			
		||||
 | 
			
		||||
=== "JavaScript"
 | 
			
		||||
 | 
			
		||||
    ```javascript title="top_k.js"
 | 
			
		||||
    [class]{}-[func]{topKHeap}
 | 
			
		||||
    ```
 | 
			
		||||
 | 
			
		||||
=== "TypeScript"
 | 
			
		||||
 | 
			
		||||
    ```typescript title="top_k.ts"
 | 
			
		||||
    [class]{}-[func]{topKHeap}
 | 
			
		||||
    ```
 | 
			
		||||
 | 
			
		||||
=== "C"
 | 
			
		||||
 | 
			
		||||
    ```c title="top_k.c"
 | 
			
		||||
    [class]{maxHeap}-[func]{topKHeap}
 | 
			
		||||
    ```
 | 
			
		||||
 | 
			
		||||
=== "C#"
 | 
			
		||||
 | 
			
		||||
    ```csharp title="top_k.cs"
 | 
			
		||||
    [class]{top_k}-[func]{topKHeap}
 | 
			
		||||
    ```
 | 
			
		||||
 | 
			
		||||
=== "Swift"
 | 
			
		||||
 | 
			
		||||
    ```swift title="top_k.swift"
 | 
			
		||||
    [class]{}-[func]{topKHeap}
 | 
			
		||||
    ```
 | 
			
		||||
 | 
			
		||||
=== "Zig"
 | 
			
		||||
 | 
			
		||||
    ```zig title="top_k.zig"
 | 
			
		||||
    [class]{}-[func]{topKHeap}
 | 
			
		||||
    ```
 | 
			
		||||
 | 
			
		||||
=== "Dart"
 | 
			
		||||
 | 
			
		||||
    ```dart title="top_k.dart"
 | 
			
		||||
    [class]{}-[func]{top_k_heap}
 | 
			
		||||
    ```
 | 
			
		||||
@ -82,7 +82,7 @@ hide:
 | 
			
		||||
 | 
			
		||||
<h3 align="left"> 作者简介 </h3>
 | 
			
		||||
 | 
			
		||||
靳宇栋 (Krahets),大厂高级算法工程师,上海交通大学硕士。力扣(LeetCode)全网阅读量最高博主,其 LeetBook《图解算法数据结构》已被订阅 22 万本。
 | 
			
		||||
靳宇栋 (Krahets),大厂高级算法工程师,上海交通大学硕士。力扣(LeetCode)全网阅读量最高博主,其 LeetBook《图解算法数据结构》已被订阅 24 万本。
 | 
			
		||||
 | 
			
		||||
---
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@ -175,8 +175,9 @@ nav:
 | 
			
		||||
  - 8.     堆:
 | 
			
		||||
    - chapter_heap/index.md
 | 
			
		||||
    - 8.1.   堆: chapter_heap/heap.md
 | 
			
		||||
    - 8.2.   建堆操作 *: chapter_heap/build_heap.md
 | 
			
		||||
    - 8.3.   小结: chapter_heap/summary.md
 | 
			
		||||
    - 8.2.   建堆操作: chapter_heap/build_heap.md
 | 
			
		||||
    - 8.3.   Top-K 问题: chapter_heap/top_k.md
 | 
			
		||||
    - 8.4.   小结: chapter_heap/summary.md
 | 
			
		||||
  - 9.     图:
 | 
			
		||||
    - chapter_graph/index.md
 | 
			
		||||
    - 9.1.   图: chapter_graph/graph.md
 | 
			
		||||
 | 
			
		||||