feat: Add the section of Top-K problem (#551)
* Add the section of Top-K problem * Update my_heap.py * Update build_heap.md * Update my_heap.py
@@ -1,4 +1,4 @@
|
||||
# 建堆操作 *
|
||||
# 建堆操作
|
||||
|
||||
如果我们想要根据输入列表生成一个堆,这个过程被称为「建堆」。
|
||||
|
||||
|
||||
BIN
docs/chapter_heap/top_k.assets/top_k_heap_step1.png
Normal file
|
After Width: | Height: | Size: 46 KiB |
BIN
docs/chapter_heap/top_k.assets/top_k_heap_step2.png
Normal file
|
After Width: | Height: | Size: 50 KiB |
BIN
docs/chapter_heap/top_k.assets/top_k_heap_step3.png
Normal file
|
After Width: | Height: | Size: 54 KiB |
BIN
docs/chapter_heap/top_k.assets/top_k_heap_step4.png
Normal file
|
After Width: | Height: | Size: 62 KiB |
BIN
docs/chapter_heap/top_k.assets/top_k_heap_step5.png
Normal file
|
After Width: | Height: | Size: 63 KiB |
BIN
docs/chapter_heap/top_k.assets/top_k_heap_step6.png
Normal file
|
After Width: | Height: | Size: 71 KiB |
BIN
docs/chapter_heap/top_k.assets/top_k_heap_step7.png
Normal file
|
After Width: | Height: | Size: 62 KiB |
BIN
docs/chapter_heap/top_k.assets/top_k_heap_step8.png
Normal file
|
After Width: | Height: | Size: 64 KiB |
BIN
docs/chapter_heap/top_k.assets/top_k_heap_step9.png
Normal file
|
After Width: | Height: | Size: 53 KiB |
BIN
docs/chapter_heap/top_k.assets/top_k_sorting.png
Normal file
|
After Width: | Height: | Size: 41 KiB |
BIN
docs/chapter_heap/top_k.assets/top_k_traversal.png
Normal file
|
After Width: | Height: | Size: 62 KiB |
133
docs/chapter_heap/top_k.md
Normal file
@@ -0,0 +1,133 @@
|
||||
# Top-K 问题
|
||||
|
||||
!!! question
|
||||
|
||||
给定一个长度为 $n$ 无序数组 `nums` ,请返回数组中前 $k$ 大的元素。
|
||||
|
||||
对于该问题,我们先介绍两种思路比较直接的解法,再介绍效率更高的堆解法。
|
||||
|
||||
## 方法一:遍历选择
|
||||
|
||||
我们可以进行 $k$ 轮遍历,分别在每轮中提取第 $1$ , $2$ , $\cdots$ , $k$ 大的元素,时间复杂度为 $O(nk)$ 。
|
||||
|
||||
该方法只适用于 $k \ll n$ 的情况,因为当 $k$ 与 $n$ 比较接近时,其时间复杂度趋向于 $O(n^2)$ ,非常耗时。
|
||||
|
||||

|
||||
|
||||
!!! tip
|
||||
|
||||
当 $k = n$ 时,我们可以得到从大到小的序列,等价于「选择排序」算法。
|
||||
|
||||
## 方法二:排序
|
||||
|
||||
我们可以对数组 `nums` 进行排序,并返回最右边的 $k$ 个元素,时间复杂度为 $O(n \log n)$ 。
|
||||
|
||||
显然,该方法“超额”完成任务了,因为我们只需要找出最大的 $k$ 个元素即可,而不需要排序其他元素。
|
||||
|
||||

|
||||
|
||||
## 方法三:堆
|
||||
|
||||
我们可以基于堆更加高效地解决 Top-K 问题,流程如下:
|
||||
|
||||
1. 初始化一个小顶堆,其堆顶元素最小;
|
||||
2. 先将数组的前 $k$ 个元素依次入堆;
|
||||
3. 从第 $k + 1$ 个元素开始,若当前元素大于堆顶元素,则将堆顶元素出堆,并将当前元素入堆;
|
||||
4. 遍历完成后,堆中保存的就是最大的 $k$ 个元素;
|
||||
|
||||
=== "<1>"
|
||||

|
||||
|
||||
=== "<2>"
|
||||

|
||||
|
||||
=== "<3>"
|
||||

|
||||
|
||||
=== "<4>"
|
||||

|
||||
|
||||
=== "<5>"
|
||||

|
||||
|
||||
=== "<6>"
|
||||

|
||||
|
||||
=== "<7>"
|
||||

|
||||
|
||||
=== "<8>"
|
||||

|
||||
|
||||
=== "<9>"
|
||||

|
||||
|
||||
总共执行了 $n$ 轮入堆和出堆,堆的最大长度为 $k$ ,因此时间复杂度为 $O(n \log k)$ 。该方法的效率很高,当 $k$ 较小时,时间复杂度趋向 $O(n)$ ;当 $k$ 较大时,时间复杂度不会超过 $O(n \log n)$ 。
|
||||
|
||||
另外,该方法适用于动态数据流的使用场景。在不断加入数据时,我们可以持续维护堆内的元素,从而实现最大 $k$ 个元素的动态更新。
|
||||
|
||||
=== "Java"
|
||||
|
||||
```java title="top_k.java"
|
||||
[class]{top_k}-[func]{topKHeap}
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title="top_k.cpp"
|
||||
[class]{}-[func]{topKHeap}
|
||||
```
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title="top_k.py"
|
||||
[class]{}-[func]{top_k_heap}
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title="top_k.go"
|
||||
[class]{maxHeap}-[func]{topKHeap}
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
|
||||
```javascript title="top_k.js"
|
||||
[class]{}-[func]{topKHeap}
|
||||
```
|
||||
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript title="top_k.ts"
|
||||
[class]{}-[func]{topKHeap}
|
||||
```
|
||||
|
||||
=== "C"
|
||||
|
||||
```c title="top_k.c"
|
||||
[class]{maxHeap}-[func]{topKHeap}
|
||||
```
|
||||
|
||||
=== "C#"
|
||||
|
||||
```csharp title="top_k.cs"
|
||||
[class]{top_k}-[func]{topKHeap}
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title="top_k.swift"
|
||||
[class]{}-[func]{topKHeap}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
||||
```zig title="top_k.zig"
|
||||
[class]{}-[func]{topKHeap}
|
||||
```
|
||||
|
||||
=== "Dart"
|
||||
|
||||
```dart title="top_k.dart"
|
||||
[class]{}-[func]{top_k_heap}
|
||||
```
|
||||
@@ -82,7 +82,7 @@ hide:
|
||||
|
||||
<h3 align="left"> 作者简介 </h3>
|
||||
|
||||
靳宇栋 (Krahets),大厂高级算法工程师,上海交通大学硕士。力扣(LeetCode)全网阅读量最高博主,其 LeetBook《图解算法数据结构》已被订阅 22 万本。
|
||||
靳宇栋 (Krahets),大厂高级算法工程师,上海交通大学硕士。力扣(LeetCode)全网阅读量最高博主,其 LeetBook《图解算法数据结构》已被订阅 24 万本。
|
||||
|
||||
---
|
||||
|
||||
|
||||