1. lower-case nouns

2. fix 2 figures
3. Replace some 「」 by “”
This commit is contained in:
krahets
2023-08-20 23:28:30 +08:00
parent 2626de8d0b
commit 981144e42d
48 changed files with 174 additions and 162 deletions

View File

@ -1,12 +1,13 @@
# 双向队列
对于队列,我们仅能在头部删除或在尾部添加元素。然而,「双向队列 Deque」提供了更高的灵活性允许在头部和尾部执行元素的添加或删除操作。
对于队列,我们仅能在头部删除或在尾部添加元素。然而,「双向队列 deque」提供了更高的灵活性允许在头部和尾部执行元素的添加或删除操作。
![双向队列的操作](deque.assets/deque_operations.png)
## 双向队列常用操作
双向队列的常用操作如下表所示,具体的方法名称需要根据所使用的编程语言来确定。
<p align="center"> 表:双向队列操作效率 </p>
| 方法名 | 描述 | 时间复杂度 |
@ -323,7 +324,7 @@
回顾上一节内容,我们使用普通单向链表来实现队列,因为它可以方便地删除头节点(对应出队操作)和在尾节点后添加新节点(对应入队操作)。
对于双向队列而言,头部和尾部都可以执行入队和出队操作。换句话说,双向队列需要实现另一个对称方向的操作。为此,我们采用双向链表作为双向队列的底层数据结构。
对于双向队列而言,头部和尾部都可以执行入队和出队操作。换句话说,双向队列需要实现另一个对称方向的操作。为此,我们采用双向链表作为双向队列的底层数据结构。
我们将双向链表的头节点和尾节点视为双向队列的队首和队尾,同时实现在两端添加和删除节点的功能。

View File

@ -1,14 +1,15 @@
# 队列
「队列 Queue」是一种遵循先入先出First In, First Out规则的线性数据结构。顾名思义,队列模拟了排队现象,即新来的人不断加入队列的尾部,而位于队列头部的人逐个离开。
「队列 queue」是一种遵循先入先出规则的线性数据结构。顾名思义队列模拟了排队现象即新来的人不断加入队列的尾部而位于队列头部的人逐个离开。
我们把队列的头部称为队首,尾部称为队尾,把将元素加入队尾的操作称为入队,删除队首元素的操作称为出队
我们把队列的头部称为队首,尾部称为队尾,把将元素加入队尾的操作称为入队,删除队首元素的操作称为出队
![队列的先入先出规则](queue.assets/queue_operations.png)
## 队列常用操作
队列的常见操作如下表所示。需要注意的是,不同编程语言的方法名称可能会有所不同。我们在此采用与栈相同的方法命名。
<p align="center"> 表:队列操作效率 </p>
| 方法名 | 描述 | 时间复杂度 |
@ -288,7 +289,7 @@
### 基于链表的实现
对于链表实现,我们可以将链表的头节点」和「尾节点分别视为队首队尾,规定队尾仅可添加节点,队首仅可删除节点。
对于链表实现,我们可以将链表的头节点”和“尾节点分别视为队首”和“队尾,规定队尾仅可添加节点,队首仅可删除节点。
=== "LinkedListQueue"
![基于链表实现队列的入队出队操作](queue.assets/linkedlist_queue.png)
@ -395,7 +396,7 @@
=== "pop()"
![array_queue_pop](queue.assets/array_queue_pop.png)
你可能会发现一个问题:在不断进行入队和出队的过程中,`front` 和 `rear` 都在向右移动,**当它们到达数组尾部时就无法继续移动了**。为解决此问题,我们可以将数组视为首尾相接的环形数组
你可能会发现一个问题:在不断进行入队和出队的过程中,`front` 和 `rear` 都在向右移动,**当它们到达数组尾部时就无法继续移动了**。为解决此问题,我们可以将数组视为首尾相接的环形数组
对于环形数组,我们需要让 `front` 或 `rear` 在越过数组尾部时,直接回到数组头部继续遍历。这种周期性规律可以通过“取余操作”来实现,代码如下所示。

View File

@ -1,16 +1,17 @@
# 栈
「栈 Stack」是一种遵循先入后出First In, Last Out原则的线性数据结构。
「栈 stack」是一种遵循先入后出的逻辑的线性数据结构。
我们可以将栈类比为桌面上的一摞盘子,如果需要拿出底部的盘子,则需要先将上面的盘子依次取出。我们将盘子替换为各种类型的元素(如整数、字符、对象等),就得到了栈数据结构。
在栈中,我们把堆叠元素的顶部称为栈顶,底部称为栈底。将把元素添加到栈顶的操作叫做入栈,而删除栈顶元素的操作叫做出栈
在栈中,我们把堆叠元素的顶部称为栈顶,底部称为栈底。将把元素添加到栈顶的操作叫做入栈,而删除栈顶元素的操作叫做出栈
![栈的先入后出规则](stack.assets/stack_operations.png)
## 栈常用操作
栈的常用操作如下表所示,具体的方法名需要根据所使用的编程语言来确定。在此,我们以常见的 `push()` , `pop()` , `peek()` 命名为例。
<p align="center"> 表:栈的操作效率 </p>
| 方法 | 描述 | 时间复杂度 |
@ -19,7 +20,7 @@
| pop() | 栈顶元素出栈 | $O(1)$ |
| peek() | 访问栈顶元素 | $O(1)$ |
通常情况下,我们可以直接使用编程语言内置的栈类。然而,某些语言可能没有专门提供栈类,这时我们可以将该语言的数组」或「链表视作栈来使用,并通过“脑补”来忽略与栈无关的操作。
通常情况下,我们可以直接使用编程语言内置的栈类。然而,某些语言可能没有专门提供栈类,这时我们可以将该语言的数组”或“链表视作栈来使用,并在程序逻辑上忽略与栈无关的操作。
=== "Java"
@ -377,7 +378,7 @@
### 基于数组的实现
在基于「数组实现栈时,我们可以将数组的尾部作为栈顶。在这样的设计下,入栈与出栈操作就分别对应在数组尾部添加元素与删除元素,时间复杂度都为 $O(1)$ 。
使用数组实现栈时,我们可以将数组的尾部作为栈顶。在这样的设计下,入栈与出栈操作就分别对应在数组尾部添加元素与删除元素,时间复杂度都为 $O(1)$ 。
=== "ArrayStack"
![基于数组实现栈的入栈出栈操作](stack.assets/array_stack.png)
@ -489,5 +490,5 @@
## 栈典型应用
- **浏览器中的后退与前进、软件中的撤销与反撤销**。每当我们打开新的网页,浏览器就会将上一个网页执行入栈,这样我们就可以通过后退操作回到上一页面。后退操作实际上是在执行出栈。如果要同时支持后退和前进,那么需要两个栈来配合实现。
- **浏览器中的后退与前进、软件中的撤销与反撤销**。每当我们打开新的网页,浏览器就会将上一个网页执行入栈,这样我们就可以通过后退操作回到上一页面。后退操作实际上是在执行出栈。如果要同时支持后退和前进,那么需要两个栈来配合实现。
- **程序内存管理**。每次调用函数时,系统都会在栈顶添加一个栈帧,用于记录函数的上下文信息。在递归函数中,向下递推阶段会不断执行入栈操作,而向上回溯阶段则会执行出栈操作。