mirror of
https://github.com/krahets/hello-algo.git
synced 2025-07-04 20:31:59 +08:00
1. lower-case nouns
2. fix 2 figures 3. Replace some 「」 by “”
This commit is contained in:
@ -1,6 +1,6 @@
|
||||
# 图
|
||||
|
||||
「图 Graph」是一种非线性数据结构,由「顶点 Vertex」和「边 Edge」组成。我们可以将图 $G$ 抽象地表示为一组顶点 $V$ 和一组边 $E$ 的集合。以下示例展示了一个包含 5 个顶点和 7 条边的图。
|
||||
「图 graph」是一种非线性数据结构,由「顶点 vertex」和「边 edge」组成。我们可以将图 $G$ 抽象地表示为一组顶点 $V$ 和一组边 $E$ 的集合。以下示例展示了一个包含 5 个顶点和 7 条边的图。
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
@ -12,43 +12,43 @@ $$
|
||||
|
||||

|
||||
|
||||
那么,图与其他数据结构的关系是什么?如果我们把「顶点」看作节点,把「边」看作连接各个节点的指针,则可将「图」看作是一种从「链表」拓展而来的数据结构。**相较于线性关系(链表)和分治关系(树),网络关系(图)的自由度更高,从而更为复杂**。
|
||||
那么,图与其他数据结构的关系是什么?如果我们把顶点看作节点,把边看作连接各个节点的指针,则可将图看作是一种从链表拓展而来的数据结构。**相较于线性关系(链表)和分治关系(树),网络关系(图)的自由度更高,从而更为复杂**。
|
||||
|
||||
## 图常见类型
|
||||
|
||||
根据边是否具有方向,可分为「无向图 Undirected Graph」和「有向图 Directed Graph」。
|
||||
根据边是否具有方向,可分为「无向图 undirected graph」和「有向图 directed graph」。
|
||||
|
||||
- 在无向图中,边表示两顶点之间的“双向”连接关系,例如微信或 QQ 中的“好友关系”。
|
||||
- 在有向图中,边具有方向性,即 $A \rightarrow B$ 和 $A \leftarrow B$ 两个方向的边是相互独立的,例如微博或抖音上的“关注”与“被关注”关系。
|
||||
|
||||

|
||||
|
||||
根据所有顶点是否连通,可分为「连通图 Connected Graph」和「非连通图 Disconnected Graph」。
|
||||
根据所有顶点是否连通,可分为「连通图 connected graph」和「非连通图 disconnected graph」。
|
||||
|
||||
- 对于连通图,从某个顶点出发,可以到达其余任意顶点。
|
||||
- 对于非连通图,从某个顶点出发,至少有一个顶点无法到达。
|
||||
|
||||

|
||||
|
||||
我们还可以为边添加“权重”变量,从而得到「有权图 Weighted Graph」。例如,在王者荣耀等手游中,系统会根据共同游戏时间来计算玩家之间的“亲密度”,这种亲密度网络就可以用有权图来表示。
|
||||
我们还可以为边添加“权重”变量,从而得到「有权图 weighted graph」。例如,在王者荣耀等手游中,系统会根据共同游戏时间来计算玩家之间的“亲密度”,这种亲密度网络就可以用有权图来表示。
|
||||
|
||||

|
||||
|
||||
## 图常用术语
|
||||
|
||||
- 「邻接 Adjacency」:当两顶点之间存在边相连时,称这两顶点“邻接”。在上图中,顶点 1 的邻接顶点为顶点 2、3、5。
|
||||
- 「路径 Path」:从顶点 A 到顶点 B 经过的边构成的序列被称为从 A 到 B 的“路径”。在上图中,边序列 1-5-2-4 是顶点 1 到顶点 4 的一条路径。
|
||||
- 「度 Degree」表示一个顶点拥有的边数。对于有向图,「入度 In-Degree」表示有多少条边指向该顶点,「出度 Out-Degree」表示有多少条边从该顶点指出。
|
||||
- 「邻接 adjacency」:当两顶点之间存在边相连时,称这两顶点“邻接”。在上图中,顶点 1 的邻接顶点为顶点 2、3、5。
|
||||
- 「路径 path」:从顶点 A 到顶点 B 经过的边构成的序列被称为从 A 到 B 的“路径”。在上图中,边序列 1-5-2-4 是顶点 1 到顶点 4 的一条路径。
|
||||
- 「度 degree」:一个顶点拥有的边数。对于有向图,「入度 In-Degree」表示有多少条边指向该顶点,「出度 Out-Degree」表示有多少条边从该顶点指出。
|
||||
|
||||
## 图的表示
|
||||
|
||||
图的常用表示方法包括「邻接矩阵」和「邻接表」。以下使用无向图进行举例。
|
||||
图的常用表示方法包括“邻接矩阵”和“邻接表”。以下使用无向图进行举例。
|
||||
|
||||
### 邻接矩阵
|
||||
|
||||
设图的顶点数量为 $n$ ,「邻接矩阵 Adjacency Matrix」使用一个 $n \times n$ 大小的矩阵来表示图,每一行(列)代表一个顶点,矩阵元素代表边,用 $1$ 或 $0$ 表示两个顶点之间是否存在边。
|
||||
设图的顶点数量为 $n$ ,「邻接矩阵 adjacency matrix」使用一个 $n \times n$ 大小的矩阵来表示图,每一行(列)代表一个顶点,矩阵元素代表边,用 $1$ 或 $0$ 表示两个顶点之间是否存在边。
|
||||
|
||||
如下图所示,设邻接矩阵为 $M$ 、顶点列表为 $V$ ,那么矩阵元素 $M[i][j] = 1$ 表示顶点 $V[i]$ 到顶点 $V[j]$ 之间存在边,反之 $M[i][j] = 0$ 表示两顶点之间无边。
|
||||
如下图所示,设邻接矩阵为 $M$ 、顶点列表为 $V$ ,那么矩阵元素 $M[i, j] = 1$ 表示顶点 $V[i]$ 到顶点 $V[j]$ 之间存在边,反之 $M[i, j] = 0$ 表示两顶点之间无边。
|
||||
|
||||

|
||||
|
||||
@ -62,17 +62,18 @@ $$
|
||||
|
||||
### 邻接表
|
||||
|
||||
「邻接表 Adjacency List」使用 $n$ 个链表来表示图,链表节点表示顶点。第 $i$ 条链表对应顶点 $i$ ,其中存储了该顶点的所有邻接顶点(即与该顶点相连的顶点)。
|
||||
「邻接表 adjacency list」使用 $n$ 个链表来表示图,链表节点表示顶点。第 $i$ 条链表对应顶点 $i$ ,其中存储了该顶点的所有邻接顶点(即与该顶点相连的顶点)。
|
||||
|
||||

|
||||
|
||||
邻接表仅存储实际存在的边,而边的总数通常远小于 $n^2$ ,因此它更加节省空间。然而,在邻接表中需要通过遍历链表来查找边,因此其时间效率不如邻接矩阵。
|
||||
|
||||
观察上图可发现,**邻接表结构与哈希表中的「链地址法」非常相似,因此我们也可以采用类似方法来优化效率**。例如,当链表较长时,可以将链表转化为 AVL 树或红黑树,从而将时间效率从 $O(n)$ 优化至 $O(\log n)$ ,还可以通过中序遍历获取有序序列;此外,还可以将链表转换为哈希表,将时间复杂度降低至 $O(1)$ 。
|
||||
观察上图,**邻接表结构与哈希表中的“链式地址”非常相似,因此我们也可以采用类似方法来优化效率**。比如当链表较长时,可以将链表转化为 AVL 树或红黑树,从而将时间效率从 $O(n)$ 优化至 $O(\log n)$ ;还可以把链表转换为哈希表,从而将时间复杂度降低至 $O(1)$ 。
|
||||
|
||||
## 图常见应用
|
||||
|
||||
实际应用中,许多系统都可以用图来建模,相应的待求解问题也可以约化为图计算问题。
|
||||
|
||||
<p align="center"> 表:现实生活中常见的图 </p>
|
||||
|
||||
| | 顶点 | 边 | 图计算问题 |
|
||||
|
@ -1,6 +1,6 @@
|
||||
# 图基础操作
|
||||
|
||||
图的基础操作可分为对「边」的操作和对「顶点」的操作。在「邻接矩阵」和「邻接表」两种表示方法下,实现方式有所不同。
|
||||
图的基础操作可分为对“边”的操作和对“顶点”的操作。在“邻接矩阵”和“邻接表”两种表示方法下,实现方式有所不同。
|
||||
|
||||
## 基于邻接矩阵的实现
|
||||
|
||||
@ -206,6 +206,7 @@
|
||||
## 效率对比
|
||||
|
||||
设图中共有 $n$ 个顶点和 $m$ 条边,下表为邻接矩阵和邻接表的时间和空间效率对比。
|
||||
|
||||
<p align="center"> 表:邻接矩阵与邻接表对比 </p>
|
||||
|
||||
| | 邻接矩阵 | 邻接表(链表) | 邻接表(哈希表) |
|
||||
|
@ -4,9 +4,9 @@
|
||||
|
||||
树代表的是“一对多”的关系,而图则具有更高的自由度,可以表示任意的“多对多”关系。因此,我们可以把树看作是图的一种特例。显然,**树的遍历操作也是图的遍历操作的一种特例**,建议你在学习本章节时融会贯通两者的概念与实现方法。
|
||||
|
||||
「图」和「树」都是非线性数据结构,都需要使用「搜索算法」来实现遍历操作。
|
||||
图和树都是非线性数据结构,都需要使用搜索算法来实现遍历操作。
|
||||
|
||||
与树类似,图的遍历方式也可分为两种,即「广度优先遍历 Breadth-First Traversal」和「深度优先遍历 Depth-First Traversal」,也称为「广度优先搜索 Breadth-First Search」和「深度优先搜索 Depth-First Search」,简称 BFS 和 DFS。
|
||||
与树类似,图的遍历方式也可分为两种,即「广度优先遍历 breadth-first traversal」和「深度优先遍历 depth-first traversal」。它们也被称为「广度优先搜索 breadth-first search」和「深度优先搜索 depth-first search」,简称 BFS 和 DFS 。
|
||||
|
||||
## 广度优先遍历
|
||||
|
||||
@ -16,7 +16,7 @@
|
||||
|
||||
### 算法实现
|
||||
|
||||
BFS 通常借助「队列」来实现。队列具有“先入先出”的性质,这与 BFS 的“由近及远”的思想异曲同工。
|
||||
BFS 通常借助队列来实现。队列具有“先入先出”的性质,这与 BFS 的“由近及远”的思想异曲同工。
|
||||
|
||||
1. 将遍历起始顶点 `startVet` 加入队列,并开启循环。
|
||||
2. 在循环的每轮迭代中,弹出队首顶点并记录访问,然后将该顶点的所有邻接顶点加入到队列尾部。
|
||||
|
Reference in New Issue
Block a user