mirror of
https://github.com/krahets/hello-algo.git
synced 2025-11-02 04:31:55 +08:00
1. lower-case nouns
2. fix 2 figures 3. Replace some 「」 by “”
This commit is contained in:
@ -17,6 +17,7 @@
|
||||
- 整数类型 `int` 占用 $4$ bytes = $32$ bits ,可以表示 $2^{32}$ 个数字。
|
||||
|
||||
下表列举了各种基本数据类型的占用空间、取值范围和默认值。此表格无须硬背,大致理解即可,需要时可以通过查表来回忆。
|
||||
|
||||
<p align="center"> 表:基本数据类型的占用空间和取值范围 </p>
|
||||
|
||||
| 类型 | 符号 | 占用空间 | 最小值 | 最大值 | 默认值 |
|
||||
@ -78,7 +79,7 @@
|
||||
=== "Go"
|
||||
|
||||
```go title=""
|
||||
// 使用多种「基本数据类型」来初始化「数组」
|
||||
// 使用多种基本数据类型来初始化数组
|
||||
var numbers = [5]int{}
|
||||
var decimals = [5]float64{}
|
||||
var characters = [5]byte{}
|
||||
|
||||
@ -4,7 +4,7 @@
|
||||
|
||||
## 逻辑结构:线性与非线性
|
||||
|
||||
**「逻辑结构」揭示了数据元素之间的逻辑关系**。在数组和链表中,数据按照顺序依次排列,体现了数据之间的线性关系;而在树中,数据从顶部向下按层次排列,表现出祖先与后代之间的派生关系;图则由节点和边构成,反映了复杂的网络关系。
|
||||
**逻辑结构揭示了数据元素之间的逻辑关系**。在数组和链表中,数据按照顺序依次排列,体现了数据之间的线性关系;而在树中,数据从顶部向下按层次排列,表现出祖先与后代之间的派生关系;图则由节点和边构成,反映了复杂的网络关系。
|
||||
|
||||
逻辑结构可被分为“线性”和“非线性”两大类。线性结构比较直观,指数据在逻辑关系上呈线性排列;非线性结构则相反,呈非线性排列。
|
||||
|
||||
@ -31,7 +31,7 @@
|
||||
|
||||
内存是所有程序的共享资源,当某块内存被某个程序占用时,则无法被其他程序同时使用了。**因此在数据结构与算法的设计中,内存资源是一个重要的考虑因素**。比如,算法所占用的内存峰值不应超过系统剩余空闲内存;如果缺少连续大块的内存空间,那么所选用的数据结构必须能够存储在离散的内存空间内。
|
||||
|
||||
**「物理结构」反映了数据在计算机内存中的存储方式**,可分为连续空间存储(数组)和离散空间存储(链表)。物理结构从底层决定了数据的访问、更新、增删等操作方法,同时在时间效率和空间效率方面呈现出互补的特点。
|
||||
**物理结构反映了数据在计算机内存中的存储方式**,可分为连续空间存储(数组)和离散空间存储(链表)。物理结构从底层决定了数据的访问、更新、增删等操作方法,同时在时间效率和空间效率方面呈现出互补的特点。
|
||||
|
||||

|
||||
|
||||
|
||||
@ -6,9 +6,9 @@
|
||||
|
||||
## 原码、反码和补码
|
||||
|
||||
从上一节的表格中我们发现,所有整数类型能够表示的负数都比正数多一个。例如,`byte` 的取值范围是 $[-128, 127]$ 。这个现象比较反直觉,它的内在原因涉及到原码、反码、补码的相关知识。
|
||||
在上一节的表格中我们发现,所有整数类型能够表示的负数都比正数多一个,例如 `byte` 的取值范围是 $[-128, 127]$ 。这个现象比较反直觉,它的内在原因涉及到原码、反码、补码的相关知识。
|
||||
|
||||
在展开分析之前,我们首先给出三者的定义:
|
||||
实际上,**数字是以“补码”的形式存储在计算机中的**。在分析这样做的原因之前,我们首先给出三者的定义:
|
||||
|
||||
- **原码**:我们将数字的二进制表示的最高位视为符号位,其中 $0$ 表示正数,$1$ 表示负数,其余位表示数字的值。
|
||||
- **反码**:正数的反码与其原码相同,负数的反码是对其原码除符号位外的所有位取反。
|
||||
@ -16,9 +16,7 @@
|
||||
|
||||

|
||||
|
||||
显然「原码」最为直观。但实际上,**数字是以「补码」的形式存储在计算机中的**。这是因为原码存在一些局限性。
|
||||
|
||||
一方面,**负数的原码不能直接用于运算**。例如,我们在原码下计算 $1 + (-2)$ ,得到的结果是 $-3$ ,这显然是不对的。
|
||||
「原码 true form」虽然最直观,但存在一些局限性。一方面,**负数的原码不能直接用于运算**。例如在原码下计算 $1 + (-2)$ ,得到的结果是 $-3$ ,这显然是不对的。
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
@ -29,7 +27,7 @@ $$
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
为了解决此问题,计算机引入了「反码」。如果我们先将原码转换为反码,并在反码下计算 $1 + (-2)$ ,最后将结果从反码转化回原码,则可得到正确结果 $-1$ 。
|
||||
为了解决此问题,计算机引入了「反码 1's complement code」。如果我们先将原码转换为反码,并在反码下计算 $1 + (-2)$ ,最后将结果从反码转化回原码,则可得到正确结果 $-1$ 。
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
@ -51,7 +49,7 @@ $$
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
与原码一样,反码也存在正负零歧义问题,因此计算机进一步引入了「补码」。我们先来观察一下负零的原码、反码、补码的转换过程:
|
||||
与原码一样,反码也存在正负零歧义问题,因此计算机进一步引入了「补码 2's complement code」。我们先来观察一下负零的原码、反码、补码的转换过程:
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
@ -136,6 +134,7 @@ $$
|
||||
**尽管浮点数 `float` 扩展了取值范围,但其副作用是牺牲了精度**。整数类型 `int` 将全部 32 位用于表示数字,数字是均匀分布的;而由于指数位的存在,浮点数 `float` 的数值越大,相邻两个数字之间的差值就会趋向越大。
|
||||
|
||||
进一步地,指数位 $E = 0$ 和 $E = 255$ 具有特殊含义,**用于表示零、无穷大、$\mathrm{NaN}$ 等**。
|
||||
|
||||
<p align="center"> 表:指数位含义 </p>
|
||||
|
||||
| 指数位 E | 分数位 $\mathrm{N} = 0$ | 分数位 $\mathrm{N} \ne 0$ | 计算公式 |
|
||||
|
||||
Reference in New Issue
Block a user