Update the Optional alias of Python codes.

This commit is contained in:
Yudong Jin
2023-01-09 02:49:34 +08:00
parent 4d01436138
commit 97ee638d31
8 changed files with 37 additions and 45 deletions

View File

@@ -134,14 +134,14 @@ G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorit
```python title="avl_tree.py"
""" 获取结点高度 """
def height(self, node: typing.Optional[TreeNode]) -> int:
def height(self, node: Optional[TreeNode]) -> int:
# 空结点高度为 -1 ,叶结点高度为 0
if node is not None:
return node.height
return -1
""" 更新结点高度 """
def __update_height(self, node: TreeNode):
def __update_height(self, node: Optional[TreeNode]):
# 结点高度等于最高子树高度 + 1
node.height = max([self.height(node.left), self.height(node.right)]) + 1
```
@@ -239,7 +239,7 @@ G. M. Adelson-Velsky 和 E. M. Landis 在其 1962 年发表的论文 "An algorit
```python title="avl_tree.py"
""" 获取平衡因子 """
def balance_factor(self, node: TreeNode) -> int:
def balance_factor(self, node: Optional[TreeNode]) -> int:
# 空结点平衡因子为 0
if node is None:
return 0
@@ -355,7 +355,7 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
```python title="avl_tree.py"
""" 右旋操作 """
def __right_rotate(self, node: TreeNode) -> TreeNode:
def __right_rotate(self, node: Optional[TreeNode]) -> TreeNode:
child = node.left
grand_child = child.right
# 以 child 为原点,将 node 向右旋转
@@ -470,7 +470,7 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
```python title="avl_tree.py"
""" 左旋操作 """
def __left_rotate(self, node: TreeNode) -> TreeNode:
def __left_rotate(self, node: Optional[TreeNode]) -> TreeNode:
child = node.right
grand_child = child.left
# 以 child 为原点,将 node 向左旋转
@@ -621,7 +621,7 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
```python title="avl_tree.py"
""" 执行旋转操作,使该子树重新恢复平衡 """
def __rotate(self, node: TreeNode) -> TreeNode:
def __rotate(self, node: Optional[TreeNode]) -> TreeNode:
# 获取结点 node 的平衡因子
balance_factor = self.balance_factor(node)
# 左偏树
@@ -796,7 +796,7 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
return self.root
""" 递归插入结点(辅助函数)"""
def __insert_helper(self, node: typing.Optional[TreeNode], val: int) -> TreeNode:
def __insert_helper(self, node: Optional[TreeNode], val: int) -> TreeNode:
if node is None:
return TreeNode(val)
# 1. 查找插入位置,并插入结点
@@ -957,7 +957,7 @@ AVL 树的独特之处在于「旋转 Rotation」的操作其可 **在不影
return root
""" 递归删除结点(辅助函数) """
def __remove_helper(self, node: typing.Optional[TreeNode], val: int) -> typing.Optional[TreeNode]:
def __remove_helper(self, node: Optional[TreeNode], val: int) -> Optional[TreeNode]:
if node is None:
return None
# 1. 查找结点,并删除之

View File

@@ -83,7 +83,7 @@ comments: true
```python title="binary_search_tree.py"
""" 查找结点 """
def search(self, num: int) -> typing.Optional[TreeNode]:
def search(self, num: int) -> Optional[TreeNode]:
cur = self.root
# 循环查找,越过叶结点后跳出
while cur is not None:
@@ -265,7 +265,7 @@ comments: true
```python title="binary_search_tree.py"
""" 插入结点 """
def insert(self, num: int) -> typing.Optional[TreeNode]:
def insert(self, num: int) -> Optional[TreeNode]:
root = self.root
# 若树为空,直接提前返回
if root is None:
@@ -560,7 +560,7 @@ comments: true
```python title="binary_search_tree.py"
""" 删除结点 """
def remove(self, num: int) -> typing.Optional[TreeNode]:
def remove(self, num: int) -> Optional[TreeNode]:
root = self.root
# 若树为空,直接提前返回
if root is None:

View File

@@ -66,7 +66,7 @@ comments: true
```python title="binary_tree_bfs.py"
""" 层序遍历 """
def hier_order(root: TreeNode):
def hier_order(root: Optional[TreeNode]):
# 初始化队列,加入根结点
queue = collections.deque()
queue.append(root)
@@ -277,7 +277,7 @@ comments: true
```python title="binary_tree_dfs.py"
""" 前序遍历 """
def pre_order(root: typing.Optional[TreeNode]):
def pre_order(root: Optional[TreeNode]):
if root is None:
return
# 访问优先级:根结点 -> 左子树 -> 右子树
@@ -286,7 +286,7 @@ comments: true
pre_order(root=root.right)
""" 中序遍历 """
def in_order(root: typing.Optional[TreeNode]):
def in_order(root: Optional[TreeNode]):
if root is None:
return
# 访问优先级:左子树 -> 根结点 -> 右子树
@@ -295,7 +295,7 @@ comments: true
in_order(root=root.right)
""" 后序遍历 """
def post_order(root: typing.Optional[TreeNode]):
def post_order(root: Optional[TreeNode]):
if root is None:
return
# 访问优先级:左子树 -> 右子树 -> 根结点