This commit is contained in:
krahets
2023-07-26 08:59:03 +08:00
parent fd34c845bc
commit 974fea7de4
48 changed files with 299 additions and 299 deletions

View File

@ -3825,8 +3825,8 @@ dp[i] = dp[i-1] + dp[i-2]
<h2 id="1412">14.1.2. &nbsp; 方法二:记忆化搜索<a class="headerlink" href="#1412" title="Permanent link">&para;</a></h2>
<p>为了提升算法效率,<strong>我们希望所有的重叠子问题都只被计算一次</strong>。为此,我们声明一个数组 <code>mem</code> 来记录每个子问题的解,并在搜索过程中这样做:</p>
<ol>
<li>当首次计算 <span class="arithmatex">\(dp[i]\)</span> 时,我们将其记录至 <code>mem[i]</code> ,以便之后使用</li>
<li>当再次需要计算 <span class="arithmatex">\(dp[i]\)</span> 时,我们便可直接从 <code>mem[i]</code> 中获取结果,从而将重叠子问题剪枝</li>
<li>当首次计算 <span class="arithmatex">\(dp[i]\)</span> 时,我们将其记录至 <code>mem[i]</code> ,以便之后使用</li>
<li>当再次需要计算 <span class="arithmatex">\(dp[i]\)</span> 时,我们便可直接从 <code>mem[i]</code> 中获取结果,从而将重叠子问题剪枝</li>
</ol>
<div class="tabbed-set tabbed-alternate" data-tabs="3:11"><input checked="checked" id="__tabbed_3_1" name="__tabbed_3" type="radio" /><input id="__tabbed_3_2" name="__tabbed_3" type="radio" /><input id="__tabbed_3_3" name="__tabbed_3" type="radio" /><input id="__tabbed_3_4" name="__tabbed_3" type="radio" /><input id="__tabbed_3_5" name="__tabbed_3" type="radio" /><input id="__tabbed_3_6" name="__tabbed_3" type="radio" /><input id="__tabbed_3_7" name="__tabbed_3" type="radio" /><input id="__tabbed_3_8" name="__tabbed_3" type="radio" /><input id="__tabbed_3_9" name="__tabbed_3" type="radio" /><input id="__tabbed_3_10" name="__tabbed_3" type="radio" /><input id="__tabbed_3_11" name="__tabbed_3" type="radio" /><div class="tabbed-labels"><label for="__tabbed_3_1">Java</label><label for="__tabbed_3_2">C++</label><label for="__tabbed_3_3">Python</label><label for="__tabbed_3_4">Go</label><label for="__tabbed_3_5">JavaScript</label><label for="__tabbed_3_6">TypeScript</label><label for="__tabbed_3_7">C</label><label for="__tabbed_3_8">C#</label><label for="__tabbed_3_9">Swift</label><label for="__tabbed_3_10">Zig</label><label for="__tabbed_3_11">Dart</label></div>
<div class="tabbed-content">
@ -4191,9 +4191,9 @@ dp[i] = dp[i-1] + dp[i-2]
<p>与回溯算法一样,动态规划也使用“状态”概念来表示问题求解的某个特定阶段,每个状态都对应一个子问题以及相应的局部最优解。例如,爬楼梯问题的状态定义为当前所在楼梯阶数 <span class="arithmatex">\(i\)</span></p>
<p>总结以上,动态规划的常用术语包括:</p>
<ul>
<li>将数组 <code>dp</code> 称为「<span class="arithmatex">\(dp\)</span> 表」,<span class="arithmatex">\(dp[i]\)</span> 表示状态 <span class="arithmatex">\(i\)</span> 对应子问题的解</li>
<li>将最小子问题对应的状态(即第 <span class="arithmatex">\(1\)</span> , <span class="arithmatex">\(2\)</span> 阶楼梯)称为「初始状态」</li>
<li>将递推公式 <span class="arithmatex">\(dp[i] = dp[i-1] + dp[i-2]\)</span> 称为「状态转移方程」</li>
<li>将数组 <code>dp</code> 称为「<span class="arithmatex">\(dp\)</span> 表」,<span class="arithmatex">\(dp[i]\)</span> 表示状态 <span class="arithmatex">\(i\)</span> 对应子问题的解</li>
<li>将最小子问题对应的状态(即第 <span class="arithmatex">\(1\)</span> , <span class="arithmatex">\(2\)</span> 阶楼梯)称为「初始状态」</li>
<li>将递推公式 <span class="arithmatex">\(dp[i] = dp[i-1] + dp[i-2]\)</span> 称为「状态转移方程」</li>
</ul>
<p><img alt="爬楼梯的动态规划过程" src="../intro_to_dynamic_programming.assets/climbing_stairs_dp.png" /></p>
<p align="center"> Fig. 爬楼梯的动态规划过程 </p>