mirror of
https://github.com/krahets/hello-algo.git
synced 2025-07-28 04:42:48 +08:00
deploy
This commit is contained in:
@ -2857,29 +2857,29 @@
|
||||
<ul class="md-nav__list">
|
||||
|
||||
<li class="md-nav__item">
|
||||
<a href="#_1" class="md-nav__link">
|
||||
方法一:暴力搜索
|
||||
<a href="#1" class="md-nav__link">
|
||||
1. 方法一:暴力搜索
|
||||
</a>
|
||||
|
||||
</li>
|
||||
|
||||
<li class="md-nav__item">
|
||||
<a href="#_2" class="md-nav__link">
|
||||
方法二:记忆化搜索
|
||||
<a href="#2" class="md-nav__link">
|
||||
2. 方法二:记忆化搜索
|
||||
</a>
|
||||
|
||||
</li>
|
||||
|
||||
<li class="md-nav__item">
|
||||
<a href="#_3" class="md-nav__link">
|
||||
方法三:动态规划
|
||||
<a href="#3" class="md-nav__link">
|
||||
3. 方法三:动态规划
|
||||
</a>
|
||||
|
||||
</li>
|
||||
|
||||
<li class="md-nav__item">
|
||||
<a href="#_4" class="md-nav__link">
|
||||
状态压缩
|
||||
<a href="#4" class="md-nav__link">
|
||||
4. 状态压缩
|
||||
</a>
|
||||
|
||||
</li>
|
||||
@ -3432,29 +3432,29 @@
|
||||
<ul class="md-nav__list">
|
||||
|
||||
<li class="md-nav__item">
|
||||
<a href="#_1" class="md-nav__link">
|
||||
方法一:暴力搜索
|
||||
<a href="#1" class="md-nav__link">
|
||||
1. 方法一:暴力搜索
|
||||
</a>
|
||||
|
||||
</li>
|
||||
|
||||
<li class="md-nav__item">
|
||||
<a href="#_2" class="md-nav__link">
|
||||
方法二:记忆化搜索
|
||||
<a href="#2" class="md-nav__link">
|
||||
2. 方法二:记忆化搜索
|
||||
</a>
|
||||
|
||||
</li>
|
||||
|
||||
<li class="md-nav__item">
|
||||
<a href="#_3" class="md-nav__link">
|
||||
方法三:动态规划
|
||||
<a href="#3" class="md-nav__link">
|
||||
3. 方法三:动态规划
|
||||
</a>
|
||||
|
||||
</li>
|
||||
|
||||
<li class="md-nav__item">
|
||||
<a href="#_4" class="md-nav__link">
|
||||
状态压缩
|
||||
<a href="#4" class="md-nav__link">
|
||||
4. 状态压缩
|
||||
</a>
|
||||
|
||||
</li>
|
||||
@ -3557,7 +3557,7 @@ dp[i, j] = \min(dp[i-1, j], dp[i, j-1]) + grid[i, j]
|
||||
<p>状态转移顺序的核心是要保证在计算当前问题的解时,所有它依赖的更小子问题的解都已经被正确地计算出来。</p>
|
||||
</div>
|
||||
<p>根据以上分析,我们已经可以直接写出动态规划代码。然而子问题分解是一种从顶至底的思想,因此按照“暴力搜索 <span class="arithmatex">\(\rightarrow\)</span> 记忆化搜索 <span class="arithmatex">\(\rightarrow\)</span> 动态规划”的顺序实现更加符合思维习惯。</p>
|
||||
<h3 id="_1">方法一:暴力搜索<a class="headerlink" href="#_1" title="Permanent link">¶</a></h3>
|
||||
<h3 id="1">1. 方法一:暴力搜索<a class="headerlink" href="#1" title="Permanent link">¶</a></h3>
|
||||
<p>从状态 <span class="arithmatex">\([i, j]\)</span> 开始搜索,不断分解为更小的状态 <span class="arithmatex">\([i-1, j]\)</span> 和 <span class="arithmatex">\([i, j-1]\)</span> ,包括以下递归要素:</p>
|
||||
<ul>
|
||||
<li><strong>递归参数</strong>:状态 <span class="arithmatex">\([i, j]\)</span> 。</li>
|
||||
@ -3756,7 +3756,7 @@ dp[i, j] = \min(dp[i-1, j], dp[i, j-1]) + grid[i, j]
|
||||
<p align="center"> 图:暴力搜索递归树 </p>
|
||||
|
||||
<p>每个状态都有向下和向右两种选择,从左上角走到右下角总共需要 <span class="arithmatex">\(m + n - 2\)</span> 步,所以最差时间复杂度为 <span class="arithmatex">\(O(2^{m + n})\)</span> 。请注意,这种计算方式未考虑临近网格边界的情况,当到达网络边界时只剩下一种选择。因此实际的路径数量会少一些。</p>
|
||||
<h3 id="_2">方法二:记忆化搜索<a class="headerlink" href="#_2" title="Permanent link">¶</a></h3>
|
||||
<h3 id="2">2. 方法二:记忆化搜索<a class="headerlink" href="#2" title="Permanent link">¶</a></h3>
|
||||
<p>我们引入一个和网格 <code>grid</code> 相同尺寸的记忆列表 <code>mem</code> ,用于记录各个子问题的解,并将重叠子问题进行剪枝。</p>
|
||||
<div class="tabbed-set tabbed-alternate" data-tabs="2:12"><input checked="checked" id="__tabbed_2_1" name="__tabbed_2" type="radio" /><input id="__tabbed_2_2" name="__tabbed_2" type="radio" /><input id="__tabbed_2_3" name="__tabbed_2" type="radio" /><input id="__tabbed_2_4" name="__tabbed_2" type="radio" /><input id="__tabbed_2_5" name="__tabbed_2" type="radio" /><input id="__tabbed_2_6" name="__tabbed_2" type="radio" /><input id="__tabbed_2_7" name="__tabbed_2" type="radio" /><input id="__tabbed_2_8" name="__tabbed_2" type="radio" /><input id="__tabbed_2_9" name="__tabbed_2" type="radio" /><input id="__tabbed_2_10" name="__tabbed_2" type="radio" /><input id="__tabbed_2_11" name="__tabbed_2" type="radio" /><input id="__tabbed_2_12" name="__tabbed_2" type="radio" /><div class="tabbed-labels"><label for="__tabbed_2_1">Java</label><label for="__tabbed_2_2">C++</label><label for="__tabbed_2_3">Python</label><label for="__tabbed_2_4">Go</label><label for="__tabbed_2_5">JS</label><label for="__tabbed_2_6">TS</label><label for="__tabbed_2_7">C</label><label for="__tabbed_2_8">C#</label><label for="__tabbed_2_9">Swift</label><label for="__tabbed_2_10">Zig</label><label for="__tabbed_2_11">Dart</label><label for="__tabbed_2_12">Rust</label></div>
|
||||
<div class="tabbed-content">
|
||||
@ -3994,7 +3994,7 @@ dp[i, j] = \min(dp[i-1, j], dp[i, j-1]) + grid[i, j]
|
||||
<p><img alt="记忆化搜索递归树" src="../dp_solution_pipeline.assets/min_path_sum_dfs_mem.png" /></p>
|
||||
<p align="center"> 图:记忆化搜索递归树 </p>
|
||||
|
||||
<h3 id="_3">方法三:动态规划<a class="headerlink" href="#_3" title="Permanent link">¶</a></h3>
|
||||
<h3 id="3">3. 方法三:动态规划<a class="headerlink" href="#3" title="Permanent link">¶</a></h3>
|
||||
<p>基于迭代实现动态规划解法。</p>
|
||||
<div class="tabbed-set tabbed-alternate" data-tabs="3:12"><input checked="checked" id="__tabbed_3_1" name="__tabbed_3" type="radio" /><input id="__tabbed_3_2" name="__tabbed_3" type="radio" /><input id="__tabbed_3_3" name="__tabbed_3" type="radio" /><input id="__tabbed_3_4" name="__tabbed_3" type="radio" /><input id="__tabbed_3_5" name="__tabbed_3" type="radio" /><input id="__tabbed_3_6" name="__tabbed_3" type="radio" /><input id="__tabbed_3_7" name="__tabbed_3" type="radio" /><input id="__tabbed_3_8" name="__tabbed_3" type="radio" /><input id="__tabbed_3_9" name="__tabbed_3" type="radio" /><input id="__tabbed_3_10" name="__tabbed_3" type="radio" /><input id="__tabbed_3_11" name="__tabbed_3" type="radio" /><input id="__tabbed_3_12" name="__tabbed_3" type="radio" /><div class="tabbed-labels"><label for="__tabbed_3_1">Java</label><label for="__tabbed_3_2">C++</label><label for="__tabbed_3_3">Python</label><label for="__tabbed_3_4">Go</label><label for="__tabbed_3_5">JS</label><label for="__tabbed_3_6">TS</label><label for="__tabbed_3_7">C</label><label for="__tabbed_3_8">C#</label><label for="__tabbed_3_9">Swift</label><label for="__tabbed_3_10">Zig</label><label for="__tabbed_3_11">Dart</label><label for="__tabbed_3_12">Rust</label></div>
|
||||
<div class="tabbed-content">
|
||||
@ -4281,7 +4281,7 @@ dp[i, j] = \min(dp[i-1, j], dp[i, j-1]) + grid[i, j]
|
||||
</div>
|
||||
<p align="center"> 图:最小路径和的动态规划过程 </p>
|
||||
|
||||
<h3 id="_4">状态压缩<a class="headerlink" href="#_4" title="Permanent link">¶</a></h3>
|
||||
<h3 id="4">4. 状态压缩<a class="headerlink" href="#4" title="Permanent link">¶</a></h3>
|
||||
<p>由于每个格子只与其左边和上边的格子有关,因此我们可以只用一个单行数组来实现 <span class="arithmatex">\(dp\)</span> 表。</p>
|
||||
<p>请注意,因为数组 <code>dp</code> 只能表示一行的状态,所以我们无法提前初始化首列状态,而是在遍历每行中更新它。</p>
|
||||
<div class="tabbed-set tabbed-alternate" data-tabs="5:12"><input checked="checked" id="__tabbed_5_1" name="__tabbed_5" type="radio" /><input id="__tabbed_5_2" name="__tabbed_5" type="radio" /><input id="__tabbed_5_3" name="__tabbed_5" type="radio" /><input id="__tabbed_5_4" name="__tabbed_5" type="radio" /><input id="__tabbed_5_5" name="__tabbed_5" type="radio" /><input id="__tabbed_5_6" name="__tabbed_5" type="radio" /><input id="__tabbed_5_7" name="__tabbed_5" type="radio" /><input id="__tabbed_5_8" name="__tabbed_5" type="radio" /><input id="__tabbed_5_9" name="__tabbed_5" type="radio" /><input id="__tabbed_5_10" name="__tabbed_5" type="radio" /><input id="__tabbed_5_11" name="__tabbed_5" type="radio" /><input id="__tabbed_5_12" name="__tabbed_5" type="radio" /><div class="tabbed-labels"><label for="__tabbed_5_1">Java</label><label for="__tabbed_5_2">C++</label><label for="__tabbed_5_3">Python</label><label for="__tabbed_5_4">Go</label><label for="__tabbed_5_5">JS</label><label for="__tabbed_5_6">TS</label><label for="__tabbed_5_7">C</label><label for="__tabbed_5_8">C#</label><label for="__tabbed_5_9">Swift</label><label for="__tabbed_5_10">Zig</label><label for="__tabbed_5_11">Dart</label><label for="__tabbed_5_12">Rust</label></div>
|
||||
|
Reference in New Issue
Block a user