This commit is contained in:
krahets
2023-02-07 17:17:25 +08:00
parent 1ca5c731f7
commit 95bffcfb36
21 changed files with 857 additions and 548 deletions

View File

@@ -2627,7 +2627,7 @@ O(1) < O(\log n) < O(n) < O(n^2) < O(2^n) \newline
<div class="highlight"><span class="filename">space_complexity.java</span><pre><span></span><code><a id="__codelineno-60-1" name="__codelineno-60-1" href="#__codelineno-60-1"></a><span class="cm">/* 平方阶 */</span>
<a id="__codelineno-60-2" name="__codelineno-60-2" href="#__codelineno-60-2"></a><span class="kt">void</span><span class="w"> </span><span class="nf">quadratic</span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-60-3" name="__codelineno-60-3" href="#__codelineno-60-3"></a><span class="w"> </span><span class="c1">// 矩阵占用 O(n^2) 空间</span>
<a id="__codelineno-60-4" name="__codelineno-60-4" href="#__codelineno-60-4"></a><span class="w"> </span><span class="kt">int</span><span class="w"> </span><span class="o">[][]</span><span class="n">numMatrix</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">int</span><span class="o">[</span><span class="n">n</span><span class="o">][</span><span class="n">n</span><span class="o">]</span><span class="p">;</span>
<a id="__codelineno-60-4" name="__codelineno-60-4" href="#__codelineno-60-4"></a><span class="w"> </span><span class="kt">int</span><span class="o">[][]</span><span class="w"> </span><span class="n">numMatrix</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">int</span><span class="o">[</span><span class="n">n</span><span class="o">][</span><span class="n">n</span><span class="o">]</span><span class="p">;</span>
<a id="__codelineno-60-5" name="__codelineno-60-5" href="#__codelineno-60-5"></a><span class="w"> </span><span class="c1">// 二维列表占用 O(n^2) 空间</span>
<a id="__codelineno-60-6" name="__codelineno-60-6" href="#__codelineno-60-6"></a><span class="w"> </span><span class="n">List</span><span class="o">&lt;</span><span class="n">List</span><span class="o">&lt;</span><span class="n">Integer</span><span class="o">&gt;&gt;</span><span class="w"> </span><span class="n">numList</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="n">ArrayList</span><span class="o">&lt;&gt;</span><span class="p">();</span>
<a id="__codelineno-60-7" name="__codelineno-60-7" href="#__codelineno-60-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kt">int</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="w"> </span><span class="o">&lt;</span><span class="w"> </span><span class="n">n</span><span class="p">;</span><span class="w"> </span><span class="n">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
@@ -2769,8 +2769,9 @@ O(1) &lt; O(\log n) &lt; O(n) &lt; O(n^2) &lt; O(2^n) \newline
<a id="__codelineno-70-3" name="__codelineno-70-3" href="#__codelineno-70-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="mi">0</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mi">0</span><span class="p">;</span>
<a id="__codelineno-70-4" name="__codelineno-70-4" href="#__codelineno-70-4"></a><span class="w"> </span><span class="c1">// 数组 nums 长度为 n, n-1, ..., 2, 1</span>
<a id="__codelineno-70-5" name="__codelineno-70-5" href="#__codelineno-70-5"></a><span class="w"> </span><span class="kt">int</span><span class="o">[]</span><span class="w"> </span><span class="n">nums</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="k">new</span><span class="w"> </span><span class="kt">int</span><span class="o">[</span><span class="n">n</span><span class="o">]</span><span class="p">;</span>
<a id="__codelineno-70-6" name="__codelineno-70-6" href="#__codelineno-70-6"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">quadraticRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span>
<a id="__codelineno-70-7" name="__codelineno-70-7" href="#__codelineno-70-7"></a><span class="p">}</span>
<a id="__codelineno-70-6" name="__codelineno-70-6" href="#__codelineno-70-6"></a><span class="w"> </span><span class="n">System</span><span class="p">.</span><span class="na">out</span><span class="p">.</span><span class="na">println</span><span class="p">(</span><span class="s">&quot;递归 n = &quot;</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="s">&quot; 中的 nums 长度 = &quot;</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="n">nums</span><span class="p">.</span><span class="na">length</span><span class="p">);</span>
<a id="__codelineno-70-7" name="__codelineno-70-7" href="#__codelineno-70-7"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="n">quadraticRecur</span><span class="p">(</span><span class="n">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mi">1</span><span class="p">);</span>
<a id="__codelineno-70-8" name="__codelineno-70-8" href="#__codelineno-70-8"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">