feat: add the section of Graph Traversal (#367)

* Graph dev

* Add the section of Graph Traversal.

* Add missing Vertex.java

* Add mkdocs.yml

* Update numbering

* Fix indentation and update array.md
This commit is contained in:
Yudong Jin
2023-02-15 03:34:06 +08:00
committed by GitHub
parent 6044ec7feb
commit 925e05fd03
36 changed files with 538 additions and 50 deletions

View File

@@ -4,11 +4,13 @@ comments: true
# 7.2. 二叉树遍历
非线性数据结构的遍历操作比线性数据结构更加复杂,往往需要使用搜索算法来实现。常见的二叉树遍历方式有层序遍历、前序遍历、中序遍历、后序遍历。
从物理结构角度看,树是一种基于链表的数据结构,因此遍历方式也是通过指针(即引用)逐个遍历结点。同时,树还是一种非线性数据结构,这导致遍历树比遍历链表更加复杂,需要使用搜索算法来实现。
常见的二叉树遍历方式有层序遍历、前序遍历、中序遍历、后序遍历。
## 7.2.1. 层序遍历
「层序遍历 Hierarchical-Order Traversal」从顶至底、一层一层地遍历二叉树并在每层中按照从左到右的顺序访问结点。
「层序遍历 Level-Order Traversal」从顶至底、一层一层地遍历二叉树并在每层中按照从左到右的顺序访问结点。
层序遍历本质上是「广度优先搜索 Breadth-First Traversal」其体现着一种“一圈一圈向外”的层进遍历方式。
@@ -16,68 +18,76 @@ comments: true
<p align="center"> Fig. 二叉树的层序遍历 </p>
### 实现代码
广度优先遍历一般借助「队列」来实现。队列的规则是“先进先出”,广度优先遍历的规则是 ”一层层平推“ ,两者背后的思想是一致的。
=== "Java"
```java title="binary_tree_bfs.java"
[class]{binary_tree_bfs}-[func]{hierOrder}
[class]{binary_tree_bfs}-[func]{levelOrder}
```
=== "C++"
```cpp title="binary_tree_bfs.cpp"
[class]{}-[func]{hierOrder}
[class]{}-[func]{levelOrder}
```
=== "Python"
```python title="binary_tree_bfs.py"
[class]{}-[func]{hier_order}
[class]{}-[func]{level_order}
```
=== "Go"
```go title="binary_tree_bfs.go"
[class]{}-[func]{hierOrder}
[class]{}-[func]{levelOrder}
```
=== "JavaScript"
```javascript title="binary_tree_bfs.js"
[class]{}-[func]{hierOrder}
[class]{}-[func]{levelOrder}
```
=== "TypeScript"
```typescript title="binary_tree_bfs.ts"
[class]{}-[func]{hierOrder}
[class]{}-[func]{levelOrder}
```
=== "C"
```c title="binary_tree_bfs.c"
[class]{}-[func]{hierOrder}
[class]{}-[func]{levelOrder}
```
=== "C#"
```csharp title="binary_tree_bfs.cs"
[class]{binary_tree_bfs}-[func]{hierOrder}
[class]{binary_tree_bfs}-[func]{levelOrder}
```
=== "Swift"
```swift title="binary_tree_bfs.swift"
[class]{}-[func]{hierOrder}
[class]{}-[func]{levelOrder}
```
=== "Zig"
```zig title="binary_tree_bfs.zig"
[class]{}-[func]{hierOrder}
[class]{}-[func]{levelOrder}
```
### 复杂度分析
**时间复杂度**:所有结点被访问一次,使用 $O(n)$ 时间,其中 $n$ 为结点数量。
**空间复杂度**:当为满二叉树时达到最差情况,遍历到最底层前,队列中最多同时存在 $\frac{n + 1}{2}$ 个结点,使用 $O(n)$ 空间。
## 7.2.2. 前序、中序、后序遍历
相对地,前、中、后序遍历皆属于「深度优先遍历 Depth-First Traversal」其体现着一种“先走到尽头再回头继续”的回溯遍历方式。
@@ -98,6 +108,8 @@ comments: true
</div>
### 实现代码
=== "Java"
```java title="binary_tree_dfs.java"
@@ -201,3 +213,9 @@ comments: true
!!! note
使用循环一样可以实现前、中、后序遍历,但代码相对繁琐,有兴趣的同学可以自行实现。
### 复杂度分析
**时间复杂度**:所有结点被访问一次,使用 $O(n)$ 时间,其中 $n$ 为结点数量。
**空间复杂度**:当树退化为链表时达到最差情况,递归深度达到 $n$ ,系统使用 $O(n)$ 栈帧空间。