mirror of
https://github.com/krahets/hello-algo.git
synced 2025-07-30 22:03:47 +08:00
build
This commit is contained in:
978
zh-Hant/docs/chapter_dynamic_programming/dp_problem_features.md
Normal file
978
zh-Hant/docs/chapter_dynamic_programming/dp_problem_features.md
Normal file
@ -0,0 +1,978 @@
|
||||
---
|
||||
comments: true
|
||||
---
|
||||
|
||||
# 14.2 動態規劃問題特性
|
||||
|
||||
在上一節中,我們學習了動態規劃是如何透過子問題分解來求解原問題的。實際上,子問題分解是一種通用的演算法思路,在分治、動態規劃、回溯中的側重點不同。
|
||||
|
||||
- 分治演算法遞迴地將原問題劃分為多個相互獨立的子問題,直至最小子問題,並在回溯中合併子問題的解,最終得到原問題的解。
|
||||
- 動態規劃也對問題進行遞迴分解,但與分治演算法的主要區別是,動態規劃中的子問題是相互依賴的,在分解過程中會出現許多重疊子問題。
|
||||
- 回溯演算法在嘗試和回退中窮舉所有可能的解,並透過剪枝避免不必要的搜尋分支。原問題的解由一系列決策步驟構成,我們可以將每個決策步驟之前的子序列看作一個子問題。
|
||||
|
||||
實際上,動態規劃常用來求解最最佳化問題,它們不僅包含重疊子問題,還具有另外兩大特性:最優子結構、無後效性。
|
||||
|
||||
## 14.2.1 最優子結構
|
||||
|
||||
我們對爬樓梯問題稍作改動,使之更加適合展示最優子結構概念。
|
||||
|
||||
!!! question "爬樓梯最小代價"
|
||||
|
||||
給定一個樓梯,你每步可以上 $1$ 階或者 $2$ 階,每一階樓梯上都貼有一個非負整數,表示你在該臺階所需要付出的代價。給定一個非負整數陣列 $cost$ ,其中 $cost[i]$ 表示在第 $i$ 個臺階需要付出的代價,$cost[0]$ 為地面(起始點)。請計算最少需要付出多少代價才能到達頂部?
|
||||
|
||||
如圖 14-6 所示,若第 $1$、$2$、$3$ 階的代價分別為 $1$、$10$、$1$ ,則從地面爬到第 $3$ 階的最小代價為 $2$ 。
|
||||
|
||||
{ class="animation-figure" }
|
||||
|
||||
<p align="center"> 圖 14-6 爬到第 3 階的最小代價 </p>
|
||||
|
||||
設 $dp[i]$ 為爬到第 $i$ 階累計付出的代價,由於第 $i$ 階只可能從 $i - 1$ 階或 $i - 2$ 階走來,因此 $dp[i]$ 只可能等於 $dp[i - 1] + cost[i]$ 或 $dp[i - 2] + cost[i]$ 。為了儘可能減少代價,我們應該選擇兩者中較小的那一個:
|
||||
|
||||
$$
|
||||
dp[i] = \min(dp[i-1], dp[i-2]) + cost[i]
|
||||
$$
|
||||
|
||||
這便可以引出最優子結構的含義:**原問題的最優解是從子問題的最優解構建得來的**。
|
||||
|
||||
本題顯然具有最優子結構:我們從兩個子問題最優解 $dp[i-1]$ 和 $dp[i-2]$ 中挑選出較優的那一個,並用它構建出原問題 $dp[i]$ 的最優解。
|
||||
|
||||
那麼,上一節的爬樓梯題目有沒有最優子結構呢?它的目標是求解方案數量,看似是一個計數問題,但如果換一種問法:“求解最大方案數量”。我們意外地發現,**雖然題目修改前後是等價的,但最優子結構浮現出來了**:第 $n$ 階最大方案數量等於第 $n-1$ 階和第 $n-2$ 階最大方案數量之和。所以說,最優子結構的解釋方式比較靈活,在不同問題中會有不同的含義。
|
||||
|
||||
根據狀態轉移方程,以及初始狀態 $dp[1] = cost[1]$ 和 $dp[2] = cost[2]$ ,我們就可以得到動態規劃程式碼:
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title="min_cost_climbing_stairs_dp.py"
|
||||
def min_cost_climbing_stairs_dp(cost: list[int]) -> int:
|
||||
"""爬樓梯最小代價:動態規劃"""
|
||||
n = len(cost) - 1
|
||||
if n == 1 or n == 2:
|
||||
return cost[n]
|
||||
# 初始化 dp 表,用於儲存子問題的解
|
||||
dp = [0] * (n + 1)
|
||||
# 初始狀態:預設最小子問題的解
|
||||
dp[1], dp[2] = cost[1], cost[2]
|
||||
# 狀態轉移:從較小子問題逐步求解較大子問題
|
||||
for i in range(3, n + 1):
|
||||
dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i]
|
||||
return dp[n]
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title="min_cost_climbing_stairs_dp.cpp"
|
||||
/* 爬樓梯最小代價:動態規劃 */
|
||||
int minCostClimbingStairsDP(vector<int> &cost) {
|
||||
int n = cost.size() - 1;
|
||||
if (n == 1 || n == 2)
|
||||
return cost[n];
|
||||
// 初始化 dp 表,用於儲存子問題的解
|
||||
vector<int> dp(n + 1);
|
||||
// 初始狀態:預設最小子問題的解
|
||||
dp[1] = cost[1];
|
||||
dp[2] = cost[2];
|
||||
// 狀態轉移:從較小子問題逐步求解較大子問題
|
||||
for (int i = 3; i <= n; i++) {
|
||||
dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i];
|
||||
}
|
||||
return dp[n];
|
||||
}
|
||||
```
|
||||
|
||||
=== "Java"
|
||||
|
||||
```java title="min_cost_climbing_stairs_dp.java"
|
||||
/* 爬樓梯最小代價:動態規劃 */
|
||||
int minCostClimbingStairsDP(int[] cost) {
|
||||
int n = cost.length - 1;
|
||||
if (n == 1 || n == 2)
|
||||
return cost[n];
|
||||
// 初始化 dp 表,用於儲存子問題的解
|
||||
int[] dp = new int[n + 1];
|
||||
// 初始狀態:預設最小子問題的解
|
||||
dp[1] = cost[1];
|
||||
dp[2] = cost[2];
|
||||
// 狀態轉移:從較小子問題逐步求解較大子問題
|
||||
for (int i = 3; i <= n; i++) {
|
||||
dp[i] = Math.min(dp[i - 1], dp[i - 2]) + cost[i];
|
||||
}
|
||||
return dp[n];
|
||||
}
|
||||
```
|
||||
|
||||
=== "C#"
|
||||
|
||||
```csharp title="min_cost_climbing_stairs_dp.cs"
|
||||
/* 爬樓梯最小代價:動態規劃 */
|
||||
int MinCostClimbingStairsDP(int[] cost) {
|
||||
int n = cost.Length - 1;
|
||||
if (n == 1 || n == 2)
|
||||
return cost[n];
|
||||
// 初始化 dp 表,用於儲存子問題的解
|
||||
int[] dp = new int[n + 1];
|
||||
// 初始狀態:預設最小子問題的解
|
||||
dp[1] = cost[1];
|
||||
dp[2] = cost[2];
|
||||
// 狀態轉移:從較小子問題逐步求解較大子問題
|
||||
for (int i = 3; i <= n; i++) {
|
||||
dp[i] = Math.Min(dp[i - 1], dp[i - 2]) + cost[i];
|
||||
}
|
||||
return dp[n];
|
||||
}
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title="min_cost_climbing_stairs_dp.go"
|
||||
/* 爬樓梯最小代價:動態規劃 */
|
||||
func minCostClimbingStairsDP(cost []int) int {
|
||||
n := len(cost) - 1
|
||||
if n == 1 || n == 2 {
|
||||
return cost[n]
|
||||
}
|
||||
min := func(a, b int) int {
|
||||
if a < b {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
||||
// 初始化 dp 表,用於儲存子問題的解
|
||||
dp := make([]int, n+1)
|
||||
// 初始狀態:預設最小子問題的解
|
||||
dp[1] = cost[1]
|
||||
dp[2] = cost[2]
|
||||
// 狀態轉移:從較小子問題逐步求解較大子問題
|
||||
for i := 3; i <= n; i++ {
|
||||
dp[i] = min(dp[i-1], dp[i-2]) + cost[i]
|
||||
}
|
||||
return dp[n]
|
||||
}
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title="min_cost_climbing_stairs_dp.swift"
|
||||
/* 爬樓梯最小代價:動態規劃 */
|
||||
func minCostClimbingStairsDP(cost: [Int]) -> Int {
|
||||
let n = cost.count - 1
|
||||
if n == 1 || n == 2 {
|
||||
return cost[n]
|
||||
}
|
||||
// 初始化 dp 表,用於儲存子問題的解
|
||||
var dp = Array(repeating: 0, count: n + 1)
|
||||
// 初始狀態:預設最小子問題的解
|
||||
dp[1] = cost[1]
|
||||
dp[2] = cost[2]
|
||||
// 狀態轉移:從較小子問題逐步求解較大子問題
|
||||
for i in 3 ... n {
|
||||
dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i]
|
||||
}
|
||||
return dp[n]
|
||||
}
|
||||
```
|
||||
|
||||
=== "JS"
|
||||
|
||||
```javascript title="min_cost_climbing_stairs_dp.js"
|
||||
/* 爬樓梯最小代價:動態規劃 */
|
||||
function minCostClimbingStairsDP(cost) {
|
||||
const n = cost.length - 1;
|
||||
if (n === 1 || n === 2) {
|
||||
return cost[n];
|
||||
}
|
||||
// 初始化 dp 表,用於儲存子問題的解
|
||||
const dp = new Array(n + 1);
|
||||
// 初始狀態:預設最小子問題的解
|
||||
dp[1] = cost[1];
|
||||
dp[2] = cost[2];
|
||||
// 狀態轉移:從較小子問題逐步求解較大子問題
|
||||
for (let i = 3; i <= n; i++) {
|
||||
dp[i] = Math.min(dp[i - 1], dp[i - 2]) + cost[i];
|
||||
}
|
||||
return dp[n];
|
||||
}
|
||||
```
|
||||
|
||||
=== "TS"
|
||||
|
||||
```typescript title="min_cost_climbing_stairs_dp.ts"
|
||||
/* 爬樓梯最小代價:動態規劃 */
|
||||
function minCostClimbingStairsDP(cost: Array<number>): number {
|
||||
const n = cost.length - 1;
|
||||
if (n === 1 || n === 2) {
|
||||
return cost[n];
|
||||
}
|
||||
// 初始化 dp 表,用於儲存子問題的解
|
||||
const dp = new Array(n + 1);
|
||||
// 初始狀態:預設最小子問題的解
|
||||
dp[1] = cost[1];
|
||||
dp[2] = cost[2];
|
||||
// 狀態轉移:從較小子問題逐步求解較大子問題
|
||||
for (let i = 3; i <= n; i++) {
|
||||
dp[i] = Math.min(dp[i - 1], dp[i - 2]) + cost[i];
|
||||
}
|
||||
return dp[n];
|
||||
}
|
||||
```
|
||||
|
||||
=== "Dart"
|
||||
|
||||
```dart title="min_cost_climbing_stairs_dp.dart"
|
||||
/* 爬樓梯最小代價:動態規劃 */
|
||||
int minCostClimbingStairsDP(List<int> cost) {
|
||||
int n = cost.length - 1;
|
||||
if (n == 1 || n == 2) return cost[n];
|
||||
// 初始化 dp 表,用於儲存子問題的解
|
||||
List<int> dp = List.filled(n + 1, 0);
|
||||
// 初始狀態:預設最小子問題的解
|
||||
dp[1] = cost[1];
|
||||
dp[2] = cost[2];
|
||||
// 狀態轉移:從較小子問題逐步求解較大子問題
|
||||
for (int i = 3; i <= n; i++) {
|
||||
dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i];
|
||||
}
|
||||
return dp[n];
|
||||
}
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust title="min_cost_climbing_stairs_dp.rs"
|
||||
/* 爬樓梯最小代價:動態規劃 */
|
||||
fn min_cost_climbing_stairs_dp(cost: &[i32]) -> i32 {
|
||||
let n = cost.len() - 1;
|
||||
if n == 1 || n == 2 {
|
||||
return cost[n];
|
||||
}
|
||||
// 初始化 dp 表,用於儲存子問題的解
|
||||
let mut dp = vec![-1; n + 1];
|
||||
// 初始狀態:預設最小子問題的解
|
||||
dp[1] = cost[1];
|
||||
dp[2] = cost[2];
|
||||
// 狀態轉移:從較小子問題逐步求解較大子問題
|
||||
for i in 3..=n {
|
||||
dp[i] = cmp::min(dp[i - 1], dp[i - 2]) + cost[i];
|
||||
}
|
||||
dp[n]
|
||||
}
|
||||
```
|
||||
|
||||
=== "C"
|
||||
|
||||
```c title="min_cost_climbing_stairs_dp.c"
|
||||
/* 爬樓梯最小代價:動態規劃 */
|
||||
int minCostClimbingStairsDP(int cost[], int costSize) {
|
||||
int n = costSize - 1;
|
||||
if (n == 1 || n == 2)
|
||||
return cost[n];
|
||||
// 初始化 dp 表,用於儲存子問題的解
|
||||
int *dp = calloc(n + 1, sizeof(int));
|
||||
// 初始狀態:預設最小子問題的解
|
||||
dp[1] = cost[1];
|
||||
dp[2] = cost[2];
|
||||
// 狀態轉移:從較小子問題逐步求解較大子問題
|
||||
for (int i = 3; i <= n; i++) {
|
||||
dp[i] = myMin(dp[i - 1], dp[i - 2]) + cost[i];
|
||||
}
|
||||
int res = dp[n];
|
||||
// 釋放記憶體
|
||||
free(dp);
|
||||
return res;
|
||||
}
|
||||
```
|
||||
|
||||
=== "Kotlin"
|
||||
|
||||
```kotlin title="min_cost_climbing_stairs_dp.kt"
|
||||
/* 爬樓梯最小代價:動態規劃 */
|
||||
fun minCostClimbingStairsDP(cost: IntArray): Int {
|
||||
val n = cost.size - 1
|
||||
if (n == 1 || n == 2) return cost[n]
|
||||
// 初始化 dp 表,用於儲存子問題的解
|
||||
val dp = IntArray(n + 1)
|
||||
// 初始狀態:預設最小子問題的解
|
||||
dp[1] = cost[1]
|
||||
dp[2] = cost[2]
|
||||
// 狀態轉移:從較小子問題逐步求解較大子問題
|
||||
for (i in 3..n) {
|
||||
dp[i] = (min(dp[i - 1].toDouble(), dp[i - 2].toDouble()) + cost[i]).toInt()
|
||||
}
|
||||
return dp[n]
|
||||
}
|
||||
```
|
||||
|
||||
=== "Ruby"
|
||||
|
||||
```ruby title="min_cost_climbing_stairs_dp.rb"
|
||||
[class]{}-[func]{min_cost_climbing_stairs_dp}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
||||
```zig title="min_cost_climbing_stairs_dp.zig"
|
||||
// 爬樓梯最小代價:動態規劃
|
||||
fn minCostClimbingStairsDP(comptime cost: []i32) i32 {
|
||||
comptime var n = cost.len - 1;
|
||||
if (n == 1 or n == 2) {
|
||||
return cost[n];
|
||||
}
|
||||
// 初始化 dp 表,用於儲存子問題的解
|
||||
var dp = [_]i32{-1} ** (n + 1);
|
||||
// 初始狀態:預設最小子問題的解
|
||||
dp[1] = cost[1];
|
||||
dp[2] = cost[2];
|
||||
// 狀態轉移:從較小子問題逐步求解較大子問題
|
||||
for (3..n + 1) |i| {
|
||||
dp[i] = @min(dp[i - 1], dp[i - 2]) + cost[i];
|
||||
}
|
||||
return dp[n];
|
||||
}
|
||||
```
|
||||
|
||||
??? pythontutor "視覺化執行"
|
||||
|
||||
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20min_cost_climbing_stairs_dp%28cost%3A%20list%5Bint%5D%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%88%AC%E6%A5%BC%E6%A2%AF%E6%9C%80%E5%B0%8F%E4%BB%A3%E4%BB%B7%EF%BC%9A%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%22%22%22%0A%20%20%20%20n%20%3D%20len%28cost%29%20-%201%0A%20%20%20%20if%20n%20%3D%3D%201%20or%20n%20%3D%3D%202%3A%0A%20%20%20%20%20%20%20%20return%20cost%5Bn%5D%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%20dp%20%E8%A1%A8%EF%BC%8C%E7%94%A8%E4%BA%8E%E5%AD%98%E5%82%A8%E5%AD%90%E9%97%AE%E9%A2%98%E7%9A%84%E8%A7%A3%0A%20%20%20%20dp%20%3D%20%5B0%5D%20*%20%28n%20%2B%201%29%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E7%8A%B6%E6%80%81%EF%BC%9A%E9%A2%84%E8%AE%BE%E6%9C%80%E5%B0%8F%E5%AD%90%E9%97%AE%E9%A2%98%E7%9A%84%E8%A7%A3%0A%20%20%20%20dp%5B1%5D,%20dp%5B2%5D%20%3D%20cost%5B1%5D,%20cost%5B2%5D%0A%20%20%20%20%23%20%E7%8A%B6%E6%80%81%E8%BD%AC%E7%A7%BB%EF%BC%9A%E4%BB%8E%E8%BE%83%E5%B0%8F%E5%AD%90%E9%97%AE%E9%A2%98%E9%80%90%E6%AD%A5%E6%B1%82%E8%A7%A3%E8%BE%83%E5%A4%A7%E5%AD%90%E9%97%AE%E9%A2%98%0A%20%20%20%20for%20i%20in%20range%283,%20n%20%2B%201%29%3A%0A%20%20%20%20%20%20%20%20dp%5Bi%5D%20%3D%20min%28dp%5Bi%20-%201%5D,%20dp%5Bi%20-%202%5D%29%20%2B%20cost%5Bi%5D%0A%20%20%20%20return%20dp%5Bn%5D%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20cost%20%3D%20%5B0,%201,%2010,%201,%201,%201,%2010,%201,%201,%2010,%201%5D%0A%20%20%20%20print%28f%22%E8%BE%93%E5%85%A5%E6%A5%BC%E6%A2%AF%E7%9A%84%E4%BB%A3%E4%BB%B7%E5%88%97%E8%A1%A8%E4%B8%BA%20%7Bcost%7D%22%29%0A%0A%20%20%20%20res%20%3D%20min_cost_climbing_stairs_dp%28cost%29%0A%20%20%20%20print%28f%22%E7%88%AC%E5%AE%8C%E6%A5%BC%E6%A2%AF%E7%9A%84%E6%9C%80%E4%BD%8E%E4%BB%A3%E4%BB%B7%E4%B8%BA%20%7Bres%7D%22%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=4&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
||||
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20min_cost_climbing_stairs_dp%28cost%3A%20list%5Bint%5D%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%88%AC%E6%A5%BC%E6%A2%AF%E6%9C%80%E5%B0%8F%E4%BB%A3%E4%BB%B7%EF%BC%9A%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%22%22%22%0A%20%20%20%20n%20%3D%20len%28cost%29%20-%201%0A%20%20%20%20if%20n%20%3D%3D%201%20or%20n%20%3D%3D%202%3A%0A%20%20%20%20%20%20%20%20return%20cost%5Bn%5D%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%20dp%20%E8%A1%A8%EF%BC%8C%E7%94%A8%E4%BA%8E%E5%AD%98%E5%82%A8%E5%AD%90%E9%97%AE%E9%A2%98%E7%9A%84%E8%A7%A3%0A%20%20%20%20dp%20%3D%20%5B0%5D%20*%20%28n%20%2B%201%29%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E7%8A%B6%E6%80%81%EF%BC%9A%E9%A2%84%E8%AE%BE%E6%9C%80%E5%B0%8F%E5%AD%90%E9%97%AE%E9%A2%98%E7%9A%84%E8%A7%A3%0A%20%20%20%20dp%5B1%5D,%20dp%5B2%5D%20%3D%20cost%5B1%5D,%20cost%5B2%5D%0A%20%20%20%20%23%20%E7%8A%B6%E6%80%81%E8%BD%AC%E7%A7%BB%EF%BC%9A%E4%BB%8E%E8%BE%83%E5%B0%8F%E5%AD%90%E9%97%AE%E9%A2%98%E9%80%90%E6%AD%A5%E6%B1%82%E8%A7%A3%E8%BE%83%E5%A4%A7%E5%AD%90%E9%97%AE%E9%A2%98%0A%20%20%20%20for%20i%20in%20range%283,%20n%20%2B%201%29%3A%0A%20%20%20%20%20%20%20%20dp%5Bi%5D%20%3D%20min%28dp%5Bi%20-%201%5D,%20dp%5Bi%20-%202%5D%29%20%2B%20cost%5Bi%5D%0A%20%20%20%20return%20dp%5Bn%5D%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20cost%20%3D%20%5B0,%201,%2010,%201,%201,%201,%2010,%201,%201,%2010,%201%5D%0A%20%20%20%20print%28f%22%E8%BE%93%E5%85%A5%E6%A5%BC%E6%A2%AF%E7%9A%84%E4%BB%A3%E4%BB%B7%E5%88%97%E8%A1%A8%E4%B8%BA%20%7Bcost%7D%22%29%0A%0A%20%20%20%20res%20%3D%20min_cost_climbing_stairs_dp%28cost%29%0A%20%20%20%20print%28f%22%E7%88%AC%E5%AE%8C%E6%A5%BC%E6%A2%AF%E7%9A%84%E6%9C%80%E4%BD%8E%E4%BB%A3%E4%BB%B7%E4%B8%BA%20%7Bres%7D%22%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=4&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
|
||||
|
||||
圖 14-7 展示了以上程式碼的動態規劃過程。
|
||||
|
||||
{ class="animation-figure" }
|
||||
|
||||
<p align="center"> 圖 14-7 爬樓梯最小代價的動態規劃過程 </p>
|
||||
|
||||
本題也可以進行空間最佳化,將一維壓縮至零維,使得空間複雜度從 $O(n)$ 降至 $O(1)$ :
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title="min_cost_climbing_stairs_dp.py"
|
||||
def min_cost_climbing_stairs_dp_comp(cost: list[int]) -> int:
|
||||
"""爬樓梯最小代價:空間最佳化後的動態規劃"""
|
||||
n = len(cost) - 1
|
||||
if n == 1 or n == 2:
|
||||
return cost[n]
|
||||
a, b = cost[1], cost[2]
|
||||
for i in range(3, n + 1):
|
||||
a, b = b, min(a, b) + cost[i]
|
||||
return b
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title="min_cost_climbing_stairs_dp.cpp"
|
||||
/* 爬樓梯最小代價:空間最佳化後的動態規劃 */
|
||||
int minCostClimbingStairsDPComp(vector<int> &cost) {
|
||||
int n = cost.size() - 1;
|
||||
if (n == 1 || n == 2)
|
||||
return cost[n];
|
||||
int a = cost[1], b = cost[2];
|
||||
for (int i = 3; i <= n; i++) {
|
||||
int tmp = b;
|
||||
b = min(a, tmp) + cost[i];
|
||||
a = tmp;
|
||||
}
|
||||
return b;
|
||||
}
|
||||
```
|
||||
|
||||
=== "Java"
|
||||
|
||||
```java title="min_cost_climbing_stairs_dp.java"
|
||||
/* 爬樓梯最小代價:空間最佳化後的動態規劃 */
|
||||
int minCostClimbingStairsDPComp(int[] cost) {
|
||||
int n = cost.length - 1;
|
||||
if (n == 1 || n == 2)
|
||||
return cost[n];
|
||||
int a = cost[1], b = cost[2];
|
||||
for (int i = 3; i <= n; i++) {
|
||||
int tmp = b;
|
||||
b = Math.min(a, tmp) + cost[i];
|
||||
a = tmp;
|
||||
}
|
||||
return b;
|
||||
}
|
||||
```
|
||||
|
||||
=== "C#"
|
||||
|
||||
```csharp title="min_cost_climbing_stairs_dp.cs"
|
||||
/* 爬樓梯最小代價:空間最佳化後的動態規劃 */
|
||||
int MinCostClimbingStairsDPComp(int[] cost) {
|
||||
int n = cost.Length - 1;
|
||||
if (n == 1 || n == 2)
|
||||
return cost[n];
|
||||
int a = cost[1], b = cost[2];
|
||||
for (int i = 3; i <= n; i++) {
|
||||
int tmp = b;
|
||||
b = Math.Min(a, tmp) + cost[i];
|
||||
a = tmp;
|
||||
}
|
||||
return b;
|
||||
}
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title="min_cost_climbing_stairs_dp.go"
|
||||
/* 爬樓梯最小代價:空間最佳化後的動態規劃 */
|
||||
func minCostClimbingStairsDPComp(cost []int) int {
|
||||
n := len(cost) - 1
|
||||
if n == 1 || n == 2 {
|
||||
return cost[n]
|
||||
}
|
||||
min := func(a, b int) int {
|
||||
if a < b {
|
||||
return a
|
||||
}
|
||||
return b
|
||||
}
|
||||
// 初始狀態:預設最小子問題的解
|
||||
a, b := cost[1], cost[2]
|
||||
// 狀態轉移:從較小子問題逐步求解較大子問題
|
||||
for i := 3; i <= n; i++ {
|
||||
tmp := b
|
||||
b = min(a, tmp) + cost[i]
|
||||
a = tmp
|
||||
}
|
||||
return b
|
||||
}
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title="min_cost_climbing_stairs_dp.swift"
|
||||
/* 爬樓梯最小代價:空間最佳化後的動態規劃 */
|
||||
func minCostClimbingStairsDPComp(cost: [Int]) -> Int {
|
||||
let n = cost.count - 1
|
||||
if n == 1 || n == 2 {
|
||||
return cost[n]
|
||||
}
|
||||
var (a, b) = (cost[1], cost[2])
|
||||
for i in 3 ... n {
|
||||
(a, b) = (b, min(a, b) + cost[i])
|
||||
}
|
||||
return b
|
||||
}
|
||||
```
|
||||
|
||||
=== "JS"
|
||||
|
||||
```javascript title="min_cost_climbing_stairs_dp.js"
|
||||
/* 爬樓梯最小代價:狀態壓縮後的動態規劃 */
|
||||
function minCostClimbingStairsDPComp(cost) {
|
||||
const n = cost.length - 1;
|
||||
if (n === 1 || n === 2) {
|
||||
return cost[n];
|
||||
}
|
||||
let a = cost[1],
|
||||
b = cost[2];
|
||||
for (let i = 3; i <= n; i++) {
|
||||
const tmp = b;
|
||||
b = Math.min(a, tmp) + cost[i];
|
||||
a = tmp;
|
||||
}
|
||||
return b;
|
||||
}
|
||||
```
|
||||
|
||||
=== "TS"
|
||||
|
||||
```typescript title="min_cost_climbing_stairs_dp.ts"
|
||||
/* 爬樓梯最小代價:狀態壓縮後的動態規劃 */
|
||||
function minCostClimbingStairsDPComp(cost: Array<number>): number {
|
||||
const n = cost.length - 1;
|
||||
if (n === 1 || n === 2) {
|
||||
return cost[n];
|
||||
}
|
||||
let a = cost[1],
|
||||
b = cost[2];
|
||||
for (let i = 3; i <= n; i++) {
|
||||
const tmp = b;
|
||||
b = Math.min(a, tmp) + cost[i];
|
||||
a = tmp;
|
||||
}
|
||||
return b;
|
||||
}
|
||||
```
|
||||
|
||||
=== "Dart"
|
||||
|
||||
```dart title="min_cost_climbing_stairs_dp.dart"
|
||||
/* 爬樓梯最小代價:空間最佳化後的動態規劃 */
|
||||
int minCostClimbingStairsDPComp(List<int> cost) {
|
||||
int n = cost.length - 1;
|
||||
if (n == 1 || n == 2) return cost[n];
|
||||
int a = cost[1], b = cost[2];
|
||||
for (int i = 3; i <= n; i++) {
|
||||
int tmp = b;
|
||||
b = min(a, tmp) + cost[i];
|
||||
a = tmp;
|
||||
}
|
||||
return b;
|
||||
}
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust title="min_cost_climbing_stairs_dp.rs"
|
||||
/* 爬樓梯最小代價:空間最佳化後的動態規劃 */
|
||||
fn min_cost_climbing_stairs_dp_comp(cost: &[i32]) -> i32 {
|
||||
let n = cost.len() - 1;
|
||||
if n == 1 || n == 2 {
|
||||
return cost[n];
|
||||
};
|
||||
let (mut a, mut b) = (cost[1], cost[2]);
|
||||
for i in 3..=n {
|
||||
let tmp = b;
|
||||
b = cmp::min(a, tmp) + cost[i];
|
||||
a = tmp;
|
||||
}
|
||||
b
|
||||
}
|
||||
```
|
||||
|
||||
=== "C"
|
||||
|
||||
```c title="min_cost_climbing_stairs_dp.c"
|
||||
/* 爬樓梯最小代價:空間最佳化後的動態規劃 */
|
||||
int minCostClimbingStairsDPComp(int cost[], int costSize) {
|
||||
int n = costSize - 1;
|
||||
if (n == 1 || n == 2)
|
||||
return cost[n];
|
||||
int a = cost[1], b = cost[2];
|
||||
for (int i = 3; i <= n; i++) {
|
||||
int tmp = b;
|
||||
b = myMin(a, tmp) + cost[i];
|
||||
a = tmp;
|
||||
}
|
||||
return b;
|
||||
}
|
||||
```
|
||||
|
||||
=== "Kotlin"
|
||||
|
||||
```kotlin title="min_cost_climbing_stairs_dp.kt"
|
||||
/* 爬樓梯最小代價:空間最佳化後的動態規劃 */
|
||||
fun minCostClimbingStairsDPComp(cost: IntArray): Int {
|
||||
val n = cost.size - 1
|
||||
if (n == 1 || n == 2) return cost[n]
|
||||
var a = cost[1]
|
||||
var b = cost[2]
|
||||
for (i in 3..n) {
|
||||
val tmp = b
|
||||
b = (min(a.toDouble(), tmp.toDouble()) + cost[i]).toInt()
|
||||
a = tmp
|
||||
}
|
||||
return b
|
||||
}
|
||||
```
|
||||
|
||||
=== "Ruby"
|
||||
|
||||
```ruby title="min_cost_climbing_stairs_dp.rb"
|
||||
[class]{}-[func]{min_cost_climbing_stairs_dp_comp}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
||||
```zig title="min_cost_climbing_stairs_dp.zig"
|
||||
// 爬樓梯最小代價:空間最佳化後的動態規劃
|
||||
fn minCostClimbingStairsDPComp(cost: []i32) i32 {
|
||||
var n = cost.len - 1;
|
||||
if (n == 1 or n == 2) {
|
||||
return cost[n];
|
||||
}
|
||||
var a = cost[1];
|
||||
var b = cost[2];
|
||||
// 狀態轉移:從較小子問題逐步求解較大子問題
|
||||
for (3..n + 1) |i| {
|
||||
var tmp = b;
|
||||
b = @min(a, tmp) + cost[i];
|
||||
a = tmp;
|
||||
}
|
||||
return b;
|
||||
}
|
||||
```
|
||||
|
||||
??? pythontutor "視覺化執行"
|
||||
|
||||
<div style="height: 513px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20min_cost_climbing_stairs_dp_comp%28cost%3A%20list%5Bint%5D%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%88%AC%E6%A5%BC%E6%A2%AF%E6%9C%80%E5%B0%8F%E4%BB%A3%E4%BB%B7%EF%BC%9A%E7%A9%BA%E9%97%B4%E4%BC%98%E5%8C%96%E5%90%8E%E7%9A%84%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%22%22%22%0A%20%20%20%20n%20%3D%20len%28cost%29%20-%201%0A%20%20%20%20if%20n%20%3D%3D%201%20or%20n%20%3D%3D%202%3A%0A%20%20%20%20%20%20%20%20return%20cost%5Bn%5D%0A%20%20%20%20a,%20b%20%3D%20cost%5B1%5D,%20cost%5B2%5D%0A%20%20%20%20for%20i%20in%20range%283,%20n%20%2B%201%29%3A%0A%20%20%20%20%20%20%20%20a,%20b%20%3D%20b,%20min%28a,%20b%29%20%2B%20cost%5Bi%5D%0A%20%20%20%20return%20b%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20cost%20%3D%20%5B0,%201,%2010,%201,%201,%201,%2010,%201,%201,%2010,%201%5D%0A%20%20%20%20print%28f%22%E8%BE%93%E5%85%A5%E6%A5%BC%E6%A2%AF%E7%9A%84%E4%BB%A3%E4%BB%B7%E5%88%97%E8%A1%A8%E4%B8%BA%20%7Bcost%7D%22%29%0A%0A%20%20%20%20res%20%3D%20min_cost_climbing_stairs_dp_comp%28cost%29%0A%20%20%20%20print%28f%22%E7%88%AC%E5%AE%8C%E6%A5%BC%E6%A2%AF%E7%9A%84%E6%9C%80%E4%BD%8E%E4%BB%A3%E4%BB%B7%E4%B8%BA%20%7Bres%7D%22%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=5&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
||||
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20min_cost_climbing_stairs_dp_comp%28cost%3A%20list%5Bint%5D%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%88%AC%E6%A5%BC%E6%A2%AF%E6%9C%80%E5%B0%8F%E4%BB%A3%E4%BB%B7%EF%BC%9A%E7%A9%BA%E9%97%B4%E4%BC%98%E5%8C%96%E5%90%8E%E7%9A%84%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%22%22%22%0A%20%20%20%20n%20%3D%20len%28cost%29%20-%201%0A%20%20%20%20if%20n%20%3D%3D%201%20or%20n%20%3D%3D%202%3A%0A%20%20%20%20%20%20%20%20return%20cost%5Bn%5D%0A%20%20%20%20a,%20b%20%3D%20cost%5B1%5D,%20cost%5B2%5D%0A%20%20%20%20for%20i%20in%20range%283,%20n%20%2B%201%29%3A%0A%20%20%20%20%20%20%20%20a,%20b%20%3D%20b,%20min%28a,%20b%29%20%2B%20cost%5Bi%5D%0A%20%20%20%20return%20b%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20cost%20%3D%20%5B0,%201,%2010,%201,%201,%201,%2010,%201,%201,%2010,%201%5D%0A%20%20%20%20print%28f%22%E8%BE%93%E5%85%A5%E6%A5%BC%E6%A2%AF%E7%9A%84%E4%BB%A3%E4%BB%B7%E5%88%97%E8%A1%A8%E4%B8%BA%20%7Bcost%7D%22%29%0A%0A%20%20%20%20res%20%3D%20min_cost_climbing_stairs_dp_comp%28cost%29%0A%20%20%20%20print%28f%22%E7%88%AC%E5%AE%8C%E6%A5%BC%E6%A2%AF%E7%9A%84%E6%9C%80%E4%BD%8E%E4%BB%A3%E4%BB%B7%E4%B8%BA%20%7Bres%7D%22%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=5&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
|
||||
|
||||
## 14.2.2 無後效性
|
||||
|
||||
無後效性是動態規劃能夠有效解決問題的重要特性之一,其定義為:**給定一個確定的狀態,它的未來發展只與當前狀態有關,而與過去經歷的所有狀態無關**。
|
||||
|
||||
以爬樓梯問題為例,給定狀態 $i$ ,它會發展出狀態 $i+1$ 和狀態 $i+2$ ,分別對應跳 $1$ 步和跳 $2$ 步。在做出這兩種選擇時,我們無須考慮狀態 $i$ 之前的狀態,它們對狀態 $i$ 的未來沒有影響。
|
||||
|
||||
然而,如果我們給爬樓梯問題新增一個約束,情況就不一樣了。
|
||||
|
||||
!!! question "帶約束爬樓梯"
|
||||
|
||||
給定一個共有 $n$ 階的樓梯,你每步可以上 $1$ 階或者 $2$ 階,**但不能連續兩輪跳 $1$ 階**,請問有多少種方案可以爬到樓頂?
|
||||
|
||||
如圖 14-8 所示,爬上第 $3$ 階僅剩 $2$ 種可行方案,其中連續三次跳 $1$ 階的方案不滿足約束條件,因此被捨棄。
|
||||
|
||||
{ class="animation-figure" }
|
||||
|
||||
<p align="center"> 圖 14-8 帶約束爬到第 3 階的方案數量 </p>
|
||||
|
||||
在該問題中,如果上一輪是跳 $1$ 階上來的,那麼下一輪就必須跳 $2$ 階。這意味著,**下一步選擇不能由當前狀態(當前所在樓梯階數)獨立決定,還和前一個狀態(上一輪所在樓梯階數)有關**。
|
||||
|
||||
不難發現,此問題已不滿足無後效性,狀態轉移方程 $dp[i] = dp[i-1] + dp[i-2]$ 也失效了,因為 $dp[i-1]$ 代表本輪跳 $1$ 階,但其中包含了許多“上一輪是跳 $1$ 階上來的”方案,而為了滿足約束,我們就不能將 $dp[i-1]$ 直接計入 $dp[i]$ 中。
|
||||
|
||||
為此,我們需要擴展狀態定義:**狀態 $[i, j]$ 表示處在第 $i$ 階並且上一輪跳了 $j$ 階**,其中 $j \in \{1, 2\}$ 。此狀態定義有效地區分了上一輪跳了 $1$ 階還是 $2$ 階,我們可以據此判斷當前狀態是從何而來的。
|
||||
|
||||
- 當上一輪跳了 $1$ 階時,上上一輪只能選擇跳 $2$ 階,即 $dp[i, 1]$ 只能從 $dp[i-1, 2]$ 轉移過來。
|
||||
- 當上一輪跳了 $2$ 階時,上上一輪可選擇跳 $1$ 階或跳 $2$ 階,即 $dp[i, 2]$ 可以從 $dp[i-2, 1]$ 或 $dp[i-2, 2]$ 轉移過來。
|
||||
|
||||
如圖 14-9 所示,在該定義下,$dp[i, j]$ 表示狀態 $[i, j]$ 對應的方案數。此時狀態轉移方程為:
|
||||
|
||||
$$
|
||||
\begin{cases}
|
||||
dp[i, 1] = dp[i-1, 2] \\
|
||||
dp[i, 2] = dp[i-2, 1] + dp[i-2, 2]
|
||||
\end{cases}
|
||||
$$
|
||||
|
||||
{ class="animation-figure" }
|
||||
|
||||
<p align="center"> 圖 14-9 考慮約束下的遞推關係 </p>
|
||||
|
||||
最終,返回 $dp[n, 1] + dp[n, 2]$ 即可,兩者之和代表爬到第 $n$ 階的方案總數:
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title="climbing_stairs_constraint_dp.py"
|
||||
def climbing_stairs_constraint_dp(n: int) -> int:
|
||||
"""帶約束爬樓梯:動態規劃"""
|
||||
if n == 1 or n == 2:
|
||||
return 1
|
||||
# 初始化 dp 表,用於儲存子問題的解
|
||||
dp = [[0] * 3 for _ in range(n + 1)]
|
||||
# 初始狀態:預設最小子問題的解
|
||||
dp[1][1], dp[1][2] = 1, 0
|
||||
dp[2][1], dp[2][2] = 0, 1
|
||||
# 狀態轉移:從較小子問題逐步求解較大子問題
|
||||
for i in range(3, n + 1):
|
||||
dp[i][1] = dp[i - 1][2]
|
||||
dp[i][2] = dp[i - 2][1] + dp[i - 2][2]
|
||||
return dp[n][1] + dp[n][2]
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title="climbing_stairs_constraint_dp.cpp"
|
||||
/* 帶約束爬樓梯:動態規劃 */
|
||||
int climbingStairsConstraintDP(int n) {
|
||||
if (n == 1 || n == 2) {
|
||||
return 1;
|
||||
}
|
||||
// 初始化 dp 表,用於儲存子問題的解
|
||||
vector<vector<int>> dp(n + 1, vector<int>(3, 0));
|
||||
// 初始狀態:預設最小子問題的解
|
||||
dp[1][1] = 1;
|
||||
dp[1][2] = 0;
|
||||
dp[2][1] = 0;
|
||||
dp[2][2] = 1;
|
||||
// 狀態轉移:從較小子問題逐步求解較大子問題
|
||||
for (int i = 3; i <= n; i++) {
|
||||
dp[i][1] = dp[i - 1][2];
|
||||
dp[i][2] = dp[i - 2][1] + dp[i - 2][2];
|
||||
}
|
||||
return dp[n][1] + dp[n][2];
|
||||
}
|
||||
```
|
||||
|
||||
=== "Java"
|
||||
|
||||
```java title="climbing_stairs_constraint_dp.java"
|
||||
/* 帶約束爬樓梯:動態規劃 */
|
||||
int climbingStairsConstraintDP(int n) {
|
||||
if (n == 1 || n == 2) {
|
||||
return 1;
|
||||
}
|
||||
// 初始化 dp 表,用於儲存子問題的解
|
||||
int[][] dp = new int[n + 1][3];
|
||||
// 初始狀態:預設最小子問題的解
|
||||
dp[1][1] = 1;
|
||||
dp[1][2] = 0;
|
||||
dp[2][1] = 0;
|
||||
dp[2][2] = 1;
|
||||
// 狀態轉移:從較小子問題逐步求解較大子問題
|
||||
for (int i = 3; i <= n; i++) {
|
||||
dp[i][1] = dp[i - 1][2];
|
||||
dp[i][2] = dp[i - 2][1] + dp[i - 2][2];
|
||||
}
|
||||
return dp[n][1] + dp[n][2];
|
||||
}
|
||||
```
|
||||
|
||||
=== "C#"
|
||||
|
||||
```csharp title="climbing_stairs_constraint_dp.cs"
|
||||
/* 帶約束爬樓梯:動態規劃 */
|
||||
int ClimbingStairsConstraintDP(int n) {
|
||||
if (n == 1 || n == 2) {
|
||||
return 1;
|
||||
}
|
||||
// 初始化 dp 表,用於儲存子問題的解
|
||||
int[,] dp = new int[n + 1, 3];
|
||||
// 初始狀態:預設最小子問題的解
|
||||
dp[1, 1] = 1;
|
||||
dp[1, 2] = 0;
|
||||
dp[2, 1] = 0;
|
||||
dp[2, 2] = 1;
|
||||
// 狀態轉移:從較小子問題逐步求解較大子問題
|
||||
for (int i = 3; i <= n; i++) {
|
||||
dp[i, 1] = dp[i - 1, 2];
|
||||
dp[i, 2] = dp[i - 2, 1] + dp[i - 2, 2];
|
||||
}
|
||||
return dp[n, 1] + dp[n, 2];
|
||||
}
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title="climbing_stairs_constraint_dp.go"
|
||||
/* 帶約束爬樓梯:動態規劃 */
|
||||
func climbingStairsConstraintDP(n int) int {
|
||||
if n == 1 || n == 2 {
|
||||
return 1
|
||||
}
|
||||
// 初始化 dp 表,用於儲存子問題的解
|
||||
dp := make([][3]int, n+1)
|
||||
// 初始狀態:預設最小子問題的解
|
||||
dp[1][1] = 1
|
||||
dp[1][2] = 0
|
||||
dp[2][1] = 0
|
||||
dp[2][2] = 1
|
||||
// 狀態轉移:從較小子問題逐步求解較大子問題
|
||||
for i := 3; i <= n; i++ {
|
||||
dp[i][1] = dp[i-1][2]
|
||||
dp[i][2] = dp[i-2][1] + dp[i-2][2]
|
||||
}
|
||||
return dp[n][1] + dp[n][2]
|
||||
}
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title="climbing_stairs_constraint_dp.swift"
|
||||
/* 帶約束爬樓梯:動態規劃 */
|
||||
func climbingStairsConstraintDP(n: Int) -> Int {
|
||||
if n == 1 || n == 2 {
|
||||
return 1
|
||||
}
|
||||
// 初始化 dp 表,用於儲存子問題的解
|
||||
var dp = Array(repeating: Array(repeating: 0, count: 3), count: n + 1)
|
||||
// 初始狀態:預設最小子問題的解
|
||||
dp[1][1] = 1
|
||||
dp[1][2] = 0
|
||||
dp[2][1] = 0
|
||||
dp[2][2] = 1
|
||||
// 狀態轉移:從較小子問題逐步求解較大子問題
|
||||
for i in 3 ... n {
|
||||
dp[i][1] = dp[i - 1][2]
|
||||
dp[i][2] = dp[i - 2][1] + dp[i - 2][2]
|
||||
}
|
||||
return dp[n][1] + dp[n][2]
|
||||
}
|
||||
```
|
||||
|
||||
=== "JS"
|
||||
|
||||
```javascript title="climbing_stairs_constraint_dp.js"
|
||||
/* 帶約束爬樓梯:動態規劃 */
|
||||
function climbingStairsConstraintDP(n) {
|
||||
if (n === 1 || n === 2) {
|
||||
return 1;
|
||||
}
|
||||
// 初始化 dp 表,用於儲存子問題的解
|
||||
const dp = Array.from(new Array(n + 1), () => new Array(3));
|
||||
// 初始狀態:預設最小子問題的解
|
||||
dp[1][1] = 1;
|
||||
dp[1][2] = 0;
|
||||
dp[2][1] = 0;
|
||||
dp[2][2] = 1;
|
||||
// 狀態轉移:從較小子問題逐步求解較大子問題
|
||||
for (let i = 3; i <= n; i++) {
|
||||
dp[i][1] = dp[i - 1][2];
|
||||
dp[i][2] = dp[i - 2][1] + dp[i - 2][2];
|
||||
}
|
||||
return dp[n][1] + dp[n][2];
|
||||
}
|
||||
```
|
||||
|
||||
=== "TS"
|
||||
|
||||
```typescript title="climbing_stairs_constraint_dp.ts"
|
||||
/* 帶約束爬樓梯:動態規劃 */
|
||||
function climbingStairsConstraintDP(n: number): number {
|
||||
if (n === 1 || n === 2) {
|
||||
return 1;
|
||||
}
|
||||
// 初始化 dp 表,用於儲存子問題的解
|
||||
const dp = Array.from({ length: n + 1 }, () => new Array(3));
|
||||
// 初始狀態:預設最小子問題的解
|
||||
dp[1][1] = 1;
|
||||
dp[1][2] = 0;
|
||||
dp[2][1] = 0;
|
||||
dp[2][2] = 1;
|
||||
// 狀態轉移:從較小子問題逐步求解較大子問題
|
||||
for (let i = 3; i <= n; i++) {
|
||||
dp[i][1] = dp[i - 1][2];
|
||||
dp[i][2] = dp[i - 2][1] + dp[i - 2][2];
|
||||
}
|
||||
return dp[n][1] + dp[n][2];
|
||||
}
|
||||
```
|
||||
|
||||
=== "Dart"
|
||||
|
||||
```dart title="climbing_stairs_constraint_dp.dart"
|
||||
/* 帶約束爬樓梯:動態規劃 */
|
||||
int climbingStairsConstraintDP(int n) {
|
||||
if (n == 1 || n == 2) {
|
||||
return 1;
|
||||
}
|
||||
// 初始化 dp 表,用於儲存子問題的解
|
||||
List<List<int>> dp = List.generate(n + 1, (index) => List.filled(3, 0));
|
||||
// 初始狀態:預設最小子問題的解
|
||||
dp[1][1] = 1;
|
||||
dp[1][2] = 0;
|
||||
dp[2][1] = 0;
|
||||
dp[2][2] = 1;
|
||||
// 狀態轉移:從較小子問題逐步求解較大子問題
|
||||
for (int i = 3; i <= n; i++) {
|
||||
dp[i][1] = dp[i - 1][2];
|
||||
dp[i][2] = dp[i - 2][1] + dp[i - 2][2];
|
||||
}
|
||||
return dp[n][1] + dp[n][2];
|
||||
}
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust title="climbing_stairs_constraint_dp.rs"
|
||||
/* 帶約束爬樓梯:動態規劃 */
|
||||
fn climbing_stairs_constraint_dp(n: usize) -> i32 {
|
||||
if n == 1 || n == 2 {
|
||||
return 1;
|
||||
};
|
||||
// 初始化 dp 表,用於儲存子問題的解
|
||||
let mut dp = vec![vec![-1; 3]; n + 1];
|
||||
// 初始狀態:預設最小子問題的解
|
||||
dp[1][1] = 1;
|
||||
dp[1][2] = 0;
|
||||
dp[2][1] = 0;
|
||||
dp[2][2] = 1;
|
||||
// 狀態轉移:從較小子問題逐步求解較大子問題
|
||||
for i in 3..=n {
|
||||
dp[i][1] = dp[i - 1][2];
|
||||
dp[i][2] = dp[i - 2][1] + dp[i - 2][2];
|
||||
}
|
||||
dp[n][1] + dp[n][2]
|
||||
}
|
||||
```
|
||||
|
||||
=== "C"
|
||||
|
||||
```c title="climbing_stairs_constraint_dp.c"
|
||||
/* 帶約束爬樓梯:動態規劃 */
|
||||
int climbingStairsConstraintDP(int n) {
|
||||
if (n == 1 || n == 2) {
|
||||
return 1;
|
||||
}
|
||||
// 初始化 dp 表,用於儲存子問題的解
|
||||
int **dp = malloc((n + 1) * sizeof(int *));
|
||||
for (int i = 0; i <= n; i++) {
|
||||
dp[i] = calloc(3, sizeof(int));
|
||||
}
|
||||
// 初始狀態:預設最小子問題的解
|
||||
dp[1][1] = 1;
|
||||
dp[1][2] = 0;
|
||||
dp[2][1] = 0;
|
||||
dp[2][2] = 1;
|
||||
// 狀態轉移:從較小子問題逐步求解較大子問題
|
||||
for (int i = 3; i <= n; i++) {
|
||||
dp[i][1] = dp[i - 1][2];
|
||||
dp[i][2] = dp[i - 2][1] + dp[i - 2][2];
|
||||
}
|
||||
int res = dp[n][1] + dp[n][2];
|
||||
// 釋放記憶體
|
||||
for (int i = 0; i <= n; i++) {
|
||||
free(dp[i]);
|
||||
}
|
||||
free(dp);
|
||||
return res;
|
||||
}
|
||||
```
|
||||
|
||||
=== "Kotlin"
|
||||
|
||||
```kotlin title="climbing_stairs_constraint_dp.kt"
|
||||
/* 帶約束爬樓梯:動態規劃 */
|
||||
fun climbingStairsConstraintDP(n: Int): Int {
|
||||
if (n == 1 || n == 2) {
|
||||
return 1
|
||||
}
|
||||
// 初始化 dp 表,用於儲存子問題的解
|
||||
val dp = Array(n + 1) { IntArray(3) }
|
||||
// 初始狀態:預設最小子問題的解
|
||||
dp[1][1] = 1
|
||||
dp[1][2] = 0
|
||||
dp[2][1] = 0
|
||||
dp[2][2] = 1
|
||||
// 狀態轉移:從較小子問題逐步求解較大子問題
|
||||
for (i in 3..n) {
|
||||
dp[i][1] = dp[i - 1][2]
|
||||
dp[i][2] = dp[i - 2][1] + dp[i - 2][2]
|
||||
}
|
||||
return dp[n][1] + dp[n][2]
|
||||
}
|
||||
```
|
||||
|
||||
=== "Ruby"
|
||||
|
||||
```ruby title="climbing_stairs_constraint_dp.rb"
|
||||
[class]{}-[func]{climbing_stairs_constraint_dp}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
||||
```zig title="climbing_stairs_constraint_dp.zig"
|
||||
// 帶約束爬樓梯:動態規劃
|
||||
fn climbingStairsConstraintDP(comptime n: usize) i32 {
|
||||
if (n == 1 or n == 2) {
|
||||
return 1;
|
||||
}
|
||||
// 初始化 dp 表,用於儲存子問題的解
|
||||
var dp = [_][3]i32{ [_]i32{ -1, -1, -1 } } ** (n + 1);
|
||||
// 初始狀態:預設最小子問題的解
|
||||
dp[1][1] = 1;
|
||||
dp[1][2] = 0;
|
||||
dp[2][1] = 0;
|
||||
dp[2][2] = 1;
|
||||
// 狀態轉移:從較小子問題逐步求解較大子問題
|
||||
for (3..n + 1) |i| {
|
||||
dp[i][1] = dp[i - 1][2];
|
||||
dp[i][2] = dp[i - 2][1] + dp[i - 2][2];
|
||||
}
|
||||
return dp[n][1] + dp[n][2];
|
||||
}
|
||||
```
|
||||
|
||||
??? pythontutor "視覺化執行"
|
||||
|
||||
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20climbing_stairs_constraint_dp%28n%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E5%B8%A6%E7%BA%A6%E6%9D%9F%E7%88%AC%E6%A5%BC%E6%A2%AF%EF%BC%9A%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%22%22%22%0A%20%20%20%20if%20n%20%3D%3D%201%20or%20n%20%3D%3D%202%3A%0A%20%20%20%20%20%20%20%20return%201%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%20dp%20%E8%A1%A8%EF%BC%8C%E7%94%A8%E4%BA%8E%E5%AD%98%E5%82%A8%E5%AD%90%E9%97%AE%E9%A2%98%E7%9A%84%E8%A7%A3%0A%20%20%20%20dp%20%3D%20%5B%5B0%5D%20*%203%20for%20_%20in%20range%28n%20%2B%201%29%5D%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E7%8A%B6%E6%80%81%EF%BC%9A%E9%A2%84%E8%AE%BE%E6%9C%80%E5%B0%8F%E5%AD%90%E9%97%AE%E9%A2%98%E7%9A%84%E8%A7%A3%0A%20%20%20%20dp%5B1%5D%5B1%5D,%20dp%5B1%5D%5B2%5D%20%3D%201,%200%0A%20%20%20%20dp%5B2%5D%5B1%5D,%20dp%5B2%5D%5B2%5D%20%3D%200,%201%0A%20%20%20%20%23%20%E7%8A%B6%E6%80%81%E8%BD%AC%E7%A7%BB%EF%BC%9A%E4%BB%8E%E8%BE%83%E5%B0%8F%E5%AD%90%E9%97%AE%E9%A2%98%E9%80%90%E6%AD%A5%E6%B1%82%E8%A7%A3%E8%BE%83%E5%A4%A7%E5%AD%90%E9%97%AE%E9%A2%98%0A%20%20%20%20for%20i%20in%20range%283,%20n%20%2B%201%29%3A%0A%20%20%20%20%20%20%20%20dp%5Bi%5D%5B1%5D%20%3D%20dp%5Bi%20-%201%5D%5B2%5D%0A%20%20%20%20%20%20%20%20dp%5Bi%5D%5B2%5D%20%3D%20dp%5Bi%20-%202%5D%5B1%5D%20%2B%20dp%5Bi%20-%202%5D%5B2%5D%0A%20%20%20%20return%20dp%5Bn%5D%5B1%5D%20%2B%20dp%5Bn%5D%5B2%5D%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%209%0A%0A%20%20%20%20res%20%3D%20climbing_stairs_constraint_dp%28n%29%0A%20%20%20%20print%28f%22%E7%88%AC%20%7Bn%7D%20%E9%98%B6%E6%A5%BC%E6%A2%AF%E5%85%B1%E6%9C%89%20%7Bres%7D%20%E7%A7%8D%E6%96%B9%E6%A1%88%22%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=4&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
||||
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20climbing_stairs_constraint_dp%28n%3A%20int%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E5%B8%A6%E7%BA%A6%E6%9D%9F%E7%88%AC%E6%A5%BC%E6%A2%AF%EF%BC%9A%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%22%22%22%0A%20%20%20%20if%20n%20%3D%3D%201%20or%20n%20%3D%3D%202%3A%0A%20%20%20%20%20%20%20%20return%201%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E5%8C%96%20dp%20%E8%A1%A8%EF%BC%8C%E7%94%A8%E4%BA%8E%E5%AD%98%E5%82%A8%E5%AD%90%E9%97%AE%E9%A2%98%E7%9A%84%E8%A7%A3%0A%20%20%20%20dp%20%3D%20%5B%5B0%5D%20*%203%20for%20_%20in%20range%28n%20%2B%201%29%5D%0A%20%20%20%20%23%20%E5%88%9D%E5%A7%8B%E7%8A%B6%E6%80%81%EF%BC%9A%E9%A2%84%E8%AE%BE%E6%9C%80%E5%B0%8F%E5%AD%90%E9%97%AE%E9%A2%98%E7%9A%84%E8%A7%A3%0A%20%20%20%20dp%5B1%5D%5B1%5D,%20dp%5B1%5D%5B2%5D%20%3D%201,%200%0A%20%20%20%20dp%5B2%5D%5B1%5D,%20dp%5B2%5D%5B2%5D%20%3D%200,%201%0A%20%20%20%20%23%20%E7%8A%B6%E6%80%81%E8%BD%AC%E7%A7%BB%EF%BC%9A%E4%BB%8E%E8%BE%83%E5%B0%8F%E5%AD%90%E9%97%AE%E9%A2%98%E9%80%90%E6%AD%A5%E6%B1%82%E8%A7%A3%E8%BE%83%E5%A4%A7%E5%AD%90%E9%97%AE%E9%A2%98%0A%20%20%20%20for%20i%20in%20range%283,%20n%20%2B%201%29%3A%0A%20%20%20%20%20%20%20%20dp%5Bi%5D%5B1%5D%20%3D%20dp%5Bi%20-%201%5D%5B2%5D%0A%20%20%20%20%20%20%20%20dp%5Bi%5D%5B2%5D%20%3D%20dp%5Bi%20-%202%5D%5B1%5D%20%2B%20dp%5Bi%20-%202%5D%5B2%5D%0A%20%20%20%20return%20dp%5Bn%5D%5B1%5D%20%2B%20dp%5Bn%5D%5B2%5D%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20n%20%3D%209%0A%0A%20%20%20%20res%20%3D%20climbing_stairs_constraint_dp%28n%29%0A%20%20%20%20print%28f%22%E7%88%AC%20%7Bn%7D%20%E9%98%B6%E6%A5%BC%E6%A2%AF%E5%85%B1%E6%9C%89%20%7Bres%7D%20%E7%A7%8D%E6%96%B9%E6%A1%88%22%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=4&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
|
||||
|
||||
在上面的案例中,由於僅需多考慮前面一個狀態,因此我們仍然可以透過擴展狀態定義,使得問題重新滿足無後效性。然而,某些問題具有非常嚴重的“有後效性”。
|
||||
|
||||
!!! question "爬樓梯與障礙生成"
|
||||
|
||||
給定一個共有 $n$ 階的樓梯,你每步可以上 $1$ 階或者 $2$ 階。**規定當爬到第 $i$ 階時,系統自動會在第 $2i$ 階上放上障礙物,之後所有輪都不允許跳到第 $2i$ 階上**。例如,前兩輪分別跳到了第 $2$、$3$ 階上,則之後就不能跳到第 $4$、$6$ 階上。請問有多少種方案可以爬到樓頂?
|
||||
|
||||
在這個問題中,下次跳躍依賴過去所有的狀態,因為每一次跳躍都會在更高的階梯上設定障礙,並影響未來的跳躍。對於這類問題,動態規劃往往難以解決。
|
||||
|
||||
實際上,許多複雜的組合最佳化問題(例如旅行商問題)不滿足無後效性。對於這類問題,我們通常會選擇使用其他方法,例如啟發式搜尋、遺傳演算法、強化學習等,從而在有限時間內得到可用的區域性最優解。
|
1561
zh-Hant/docs/chapter_dynamic_programming/dp_solution_pipeline.md
Normal file
1561
zh-Hant/docs/chapter_dynamic_programming/dp_solution_pipeline.md
Normal file
File diff suppressed because it is too large
Load Diff
@ -0,0 +1,996 @@
|
||||
---
|
||||
comments: true
|
||||
---
|
||||
|
||||
# 14.6 編輯距離問題
|
||||
|
||||
編輯距離,也稱 Levenshtein 距離,指兩個字串之間互相轉換的最少修改次數,通常用於在資訊檢索和自然語言處理中度量兩個序列的相似度。
|
||||
|
||||
!!! question
|
||||
|
||||
輸入兩個字串 $s$ 和 $t$ ,返回將 $s$ 轉換為 $t$ 所需的最少編輯步數。
|
||||
|
||||
你可以在一個字串中進行三種編輯操作:插入一個字元、刪除一個字元、將字元替換為任意一個字元。
|
||||
|
||||
如圖 14-27 所示,將 `kitten` 轉換為 `sitting` 需要編輯 3 步,包括 2 次替換操作與 1 次新增操作;將 `hello` 轉換為 `algo` 需要 3 步,包括 2 次替換操作和 1 次刪除操作。
|
||||
|
||||
{ class="animation-figure" }
|
||||
|
||||
<p align="center"> 圖 14-27 編輯距離的示例資料 </p>
|
||||
|
||||
**編輯距離問題可以很自然地用決策樹模型來解釋**。字串對應樹節點,一輪決策(一次編輯操作)對應樹的一條邊。
|
||||
|
||||
如圖 14-28 所示,在不限制操作的情況下,每個節點都可以派生出許多條邊,每條邊對應一種操作,這意味著從 `hello` 轉換到 `algo` 有許多種可能的路徑。
|
||||
|
||||
從決策樹的角度看,本題的目標是求解節點 `hello` 和節點 `algo` 之間的最短路徑。
|
||||
|
||||
{ class="animation-figure" }
|
||||
|
||||
<p align="center"> 圖 14-28 基於決策樹模型表示編輯距離問題 </p>
|
||||
|
||||
### 1. 動態規劃思路
|
||||
|
||||
**第一步:思考每輪的決策,定義狀態,從而得到 $dp$ 表**
|
||||
|
||||
每一輪的決策是對字串 $s$ 進行一次編輯操作。
|
||||
|
||||
我們希望在編輯操作的過程中,問題的規模逐漸縮小,這樣才能構建子問題。設字串 $s$ 和 $t$ 的長度分別為 $n$ 和 $m$ ,我們先考慮兩字串尾部的字元 $s[n-1]$ 和 $t[m-1]$ 。
|
||||
|
||||
- 若 $s[n-1]$ 和 $t[m-1]$ 相同,我們可以跳過它們,直接考慮 $s[n-2]$ 和 $t[m-2]$ 。
|
||||
- 若 $s[n-1]$ 和 $t[m-1]$ 不同,我們需要對 $s$ 進行一次編輯(插入、刪除、替換),使得兩字串尾部的字元相同,從而可以跳過它們,考慮規模更小的問題。
|
||||
|
||||
也就是說,我們在字串 $s$ 中進行的每一輪決策(編輯操作),都會使得 $s$ 和 $t$ 中剩餘的待匹配字元發生變化。因此,狀態為當前在 $s$ 和 $t$ 中考慮的第 $i$ 和第 $j$ 個字元,記為 $[i, j]$ 。
|
||||
|
||||
狀態 $[i, j]$ 對應的子問題:**將 $s$ 的前 $i$ 個字元更改為 $t$ 的前 $j$ 個字元所需的最少編輯步數**。
|
||||
|
||||
至此,得到一個尺寸為 $(i+1) \times (j+1)$ 的二維 $dp$ 表。
|
||||
|
||||
**第二步:找出最優子結構,進而推導出狀態轉移方程**
|
||||
|
||||
考慮子問題 $dp[i, j]$ ,其對應的兩個字串的尾部字元為 $s[i-1]$ 和 $t[j-1]$ ,可根據不同編輯操作分為圖 14-29 所示的三種情況。
|
||||
|
||||
1. 在 $s[i-1]$ 之後新增 $t[j-1]$ ,則剩餘子問題 $dp[i, j-1]$ 。
|
||||
2. 刪除 $s[i-1]$ ,則剩餘子問題 $dp[i-1, j]$ 。
|
||||
3. 將 $s[i-1]$ 替換為 $t[j-1]$ ,則剩餘子問題 $dp[i-1, j-1]$ 。
|
||||
|
||||
{ class="animation-figure" }
|
||||
|
||||
<p align="center"> 圖 14-29 編輯距離的狀態轉移 </p>
|
||||
|
||||
根據以上分析,可得最優子結構:$dp[i, j]$ 的最少編輯步數等於 $dp[i, j-1]$、$dp[i-1, j]$、$dp[i-1, j-1]$ 三者中的最少編輯步數,再加上本次的編輯步數 $1$ 。對應的狀態轉移方程為:
|
||||
|
||||
$$
|
||||
dp[i, j] = \min(dp[i, j-1], dp[i-1, j], dp[i-1, j-1]) + 1
|
||||
$$
|
||||
|
||||
請注意,**當 $s[i-1]$ 和 $t[j-1]$ 相同時,無須編輯當前字元**,這種情況下的狀態轉移方程為:
|
||||
|
||||
$$
|
||||
dp[i, j] = dp[i-1, j-1]
|
||||
$$
|
||||
|
||||
**第三步:確定邊界條件和狀態轉移順序**
|
||||
|
||||
當兩字串都為空時,編輯步數為 $0$ ,即 $dp[0, 0] = 0$ 。當 $s$ 為空但 $t$ 不為空時,最少編輯步數等於 $t$ 的長度,即首行 $dp[0, j] = j$ 。當 $s$ 不為空但 $t$ 為空時,最少編輯步數等於 $s$ 的長度,即首列 $dp[i, 0] = i$ 。
|
||||
|
||||
觀察狀態轉移方程,解 $dp[i, j]$ 依賴左方、上方、左上方的解,因此透過兩層迴圈正序走訪整個 $dp$ 表即可。
|
||||
|
||||
### 2. 程式碼實現
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title="edit_distance.py"
|
||||
def edit_distance_dp(s: str, t: str) -> int:
|
||||
"""編輯距離:動態規劃"""
|
||||
n, m = len(s), len(t)
|
||||
dp = [[0] * (m + 1) for _ in range(n + 1)]
|
||||
# 狀態轉移:首行首列
|
||||
for i in range(1, n + 1):
|
||||
dp[i][0] = i
|
||||
for j in range(1, m + 1):
|
||||
dp[0][j] = j
|
||||
# 狀態轉移:其餘行和列
|
||||
for i in range(1, n + 1):
|
||||
for j in range(1, m + 1):
|
||||
if s[i - 1] == t[j - 1]:
|
||||
# 若兩字元相等,則直接跳過此兩字元
|
||||
dp[i][j] = dp[i - 1][j - 1]
|
||||
else:
|
||||
# 最少編輯步數 = 插入、刪除、替換這三種操作的最少編輯步數 + 1
|
||||
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j], dp[i - 1][j - 1]) + 1
|
||||
return dp[n][m]
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title="edit_distance.cpp"
|
||||
/* 編輯距離:動態規劃 */
|
||||
int editDistanceDP(string s, string t) {
|
||||
int n = s.length(), m = t.length();
|
||||
vector<vector<int>> dp(n + 1, vector<int>(m + 1, 0));
|
||||
// 狀態轉移:首行首列
|
||||
for (int i = 1; i <= n; i++) {
|
||||
dp[i][0] = i;
|
||||
}
|
||||
for (int j = 1; j <= m; j++) {
|
||||
dp[0][j] = j;
|
||||
}
|
||||
// 狀態轉移:其餘行和列
|
||||
for (int i = 1; i <= n; i++) {
|
||||
for (int j = 1; j <= m; j++) {
|
||||
if (s[i - 1] == t[j - 1]) {
|
||||
// 若兩字元相等,則直接跳過此兩字元
|
||||
dp[i][j] = dp[i - 1][j - 1];
|
||||
} else {
|
||||
// 最少編輯步數 = 插入、刪除、替換這三種操作的最少編輯步數 + 1
|
||||
dp[i][j] = min(min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][m];
|
||||
}
|
||||
```
|
||||
|
||||
=== "Java"
|
||||
|
||||
```java title="edit_distance.java"
|
||||
/* 編輯距離:動態規劃 */
|
||||
int editDistanceDP(String s, String t) {
|
||||
int n = s.length(), m = t.length();
|
||||
int[][] dp = new int[n + 1][m + 1];
|
||||
// 狀態轉移:首行首列
|
||||
for (int i = 1; i <= n; i++) {
|
||||
dp[i][0] = i;
|
||||
}
|
||||
for (int j = 1; j <= m; j++) {
|
||||
dp[0][j] = j;
|
||||
}
|
||||
// 狀態轉移:其餘行和列
|
||||
for (int i = 1; i <= n; i++) {
|
||||
for (int j = 1; j <= m; j++) {
|
||||
if (s.charAt(i - 1) == t.charAt(j - 1)) {
|
||||
// 若兩字元相等,則直接跳過此兩字元
|
||||
dp[i][j] = dp[i - 1][j - 1];
|
||||
} else {
|
||||
// 最少編輯步數 = 插入、刪除、替換這三種操作的最少編輯步數 + 1
|
||||
dp[i][j] = Math.min(Math.min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][m];
|
||||
}
|
||||
```
|
||||
|
||||
=== "C#"
|
||||
|
||||
```csharp title="edit_distance.cs"
|
||||
/* 編輯距離:動態規劃 */
|
||||
int EditDistanceDP(string s, string t) {
|
||||
int n = s.Length, m = t.Length;
|
||||
int[,] dp = new int[n + 1, m + 1];
|
||||
// 狀態轉移:首行首列
|
||||
for (int i = 1; i <= n; i++) {
|
||||
dp[i, 0] = i;
|
||||
}
|
||||
for (int j = 1; j <= m; j++) {
|
||||
dp[0, j] = j;
|
||||
}
|
||||
// 狀態轉移:其餘行和列
|
||||
for (int i = 1; i <= n; i++) {
|
||||
for (int j = 1; j <= m; j++) {
|
||||
if (s[i - 1] == t[j - 1]) {
|
||||
// 若兩字元相等,則直接跳過此兩字元
|
||||
dp[i, j] = dp[i - 1, j - 1];
|
||||
} else {
|
||||
// 最少編輯步數 = 插入、刪除、替換這三種操作的最少編輯步數 + 1
|
||||
dp[i, j] = Math.Min(Math.Min(dp[i, j - 1], dp[i - 1, j]), dp[i - 1, j - 1]) + 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n, m];
|
||||
}
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title="edit_distance.go"
|
||||
/* 編輯距離:動態規劃 */
|
||||
func editDistanceDP(s string, t string) int {
|
||||
n := len(s)
|
||||
m := len(t)
|
||||
dp := make([][]int, n+1)
|
||||
for i := 0; i <= n; i++ {
|
||||
dp[i] = make([]int, m+1)
|
||||
}
|
||||
// 狀態轉移:首行首列
|
||||
for i := 1; i <= n; i++ {
|
||||
dp[i][0] = i
|
||||
}
|
||||
for j := 1; j <= m; j++ {
|
||||
dp[0][j] = j
|
||||
}
|
||||
// 狀態轉移:其餘行和列
|
||||
for i := 1; i <= n; i++ {
|
||||
for j := 1; j <= m; j++ {
|
||||
if s[i-1] == t[j-1] {
|
||||
// 若兩字元相等,則直接跳過此兩字元
|
||||
dp[i][j] = dp[i-1][j-1]
|
||||
} else {
|
||||
// 最少編輯步數 = 插入、刪除、替換這三種操作的最少編輯步數 + 1
|
||||
dp[i][j] = MinInt(MinInt(dp[i][j-1], dp[i-1][j]), dp[i-1][j-1]) + 1
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][m]
|
||||
}
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title="edit_distance.swift"
|
||||
/* 編輯距離:動態規劃 */
|
||||
func editDistanceDP(s: String, t: String) -> Int {
|
||||
let n = s.utf8CString.count
|
||||
let m = t.utf8CString.count
|
||||
var dp = Array(repeating: Array(repeating: 0, count: m + 1), count: n + 1)
|
||||
// 狀態轉移:首行首列
|
||||
for i in 1 ... n {
|
||||
dp[i][0] = i
|
||||
}
|
||||
for j in 1 ... m {
|
||||
dp[0][j] = j
|
||||
}
|
||||
// 狀態轉移:其餘行和列
|
||||
for i in 1 ... n {
|
||||
for j in 1 ... m {
|
||||
if s.utf8CString[i - 1] == t.utf8CString[j - 1] {
|
||||
// 若兩字元相等,則直接跳過此兩字元
|
||||
dp[i][j] = dp[i - 1][j - 1]
|
||||
} else {
|
||||
// 最少編輯步數 = 插入、刪除、替換這三種操作的最少編輯步數 + 1
|
||||
dp[i][j] = min(min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][m]
|
||||
}
|
||||
```
|
||||
|
||||
=== "JS"
|
||||
|
||||
```javascript title="edit_distance.js"
|
||||
/* 編輯距離:動態規劃 */
|
||||
function editDistanceDP(s, t) {
|
||||
const n = s.length,
|
||||
m = t.length;
|
||||
const dp = Array.from({ length: n + 1 }, () => new Array(m + 1).fill(0));
|
||||
// 狀態轉移:首行首列
|
||||
for (let i = 1; i <= n; i++) {
|
||||
dp[i][0] = i;
|
||||
}
|
||||
for (let j = 1; j <= m; j++) {
|
||||
dp[0][j] = j;
|
||||
}
|
||||
// 狀態轉移:其餘行和列
|
||||
for (let i = 1; i <= n; i++) {
|
||||
for (let j = 1; j <= m; j++) {
|
||||
if (s.charAt(i - 1) === t.charAt(j - 1)) {
|
||||
// 若兩字元相等,則直接跳過此兩字元
|
||||
dp[i][j] = dp[i - 1][j - 1];
|
||||
} else {
|
||||
// 最少編輯步數 = 插入、刪除、替換這三種操作的最少編輯步數 + 1
|
||||
dp[i][j] =
|
||||
Math.min(dp[i][j - 1], dp[i - 1][j], dp[i - 1][j - 1]) + 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][m];
|
||||
}
|
||||
```
|
||||
|
||||
=== "TS"
|
||||
|
||||
```typescript title="edit_distance.ts"
|
||||
/* 編輯距離:動態規劃 */
|
||||
function editDistanceDP(s: string, t: string): number {
|
||||
const n = s.length,
|
||||
m = t.length;
|
||||
const dp = Array.from({ length: n + 1 }, () =>
|
||||
Array.from({ length: m + 1 }, () => 0)
|
||||
);
|
||||
// 狀態轉移:首行首列
|
||||
for (let i = 1; i <= n; i++) {
|
||||
dp[i][0] = i;
|
||||
}
|
||||
for (let j = 1; j <= m; j++) {
|
||||
dp[0][j] = j;
|
||||
}
|
||||
// 狀態轉移:其餘行和列
|
||||
for (let i = 1; i <= n; i++) {
|
||||
for (let j = 1; j <= m; j++) {
|
||||
if (s.charAt(i - 1) === t.charAt(j - 1)) {
|
||||
// 若兩字元相等,則直接跳過此兩字元
|
||||
dp[i][j] = dp[i - 1][j - 1];
|
||||
} else {
|
||||
// 最少編輯步數 = 插入、刪除、替換這三種操作的最少編輯步數 + 1
|
||||
dp[i][j] =
|
||||
Math.min(dp[i][j - 1], dp[i - 1][j], dp[i - 1][j - 1]) + 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][m];
|
||||
}
|
||||
```
|
||||
|
||||
=== "Dart"
|
||||
|
||||
```dart title="edit_distance.dart"
|
||||
/* 編輯距離:動態規劃 */
|
||||
int editDistanceDP(String s, String t) {
|
||||
int n = s.length, m = t.length;
|
||||
List<List<int>> dp = List.generate(n + 1, (_) => List.filled(m + 1, 0));
|
||||
// 狀態轉移:首行首列
|
||||
for (int i = 1; i <= n; i++) {
|
||||
dp[i][0] = i;
|
||||
}
|
||||
for (int j = 1; j <= m; j++) {
|
||||
dp[0][j] = j;
|
||||
}
|
||||
// 狀態轉移:其餘行和列
|
||||
for (int i = 1; i <= n; i++) {
|
||||
for (int j = 1; j <= m; j++) {
|
||||
if (s[i - 1] == t[j - 1]) {
|
||||
// 若兩字元相等,則直接跳過此兩字元
|
||||
dp[i][j] = dp[i - 1][j - 1];
|
||||
} else {
|
||||
// 最少編輯步數 = 插入、刪除、替換這三種操作的最少編輯步數 + 1
|
||||
dp[i][j] = min(min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][m];
|
||||
}
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust title="edit_distance.rs"
|
||||
/* 編輯距離:動態規劃 */
|
||||
fn edit_distance_dp(s: &str, t: &str) -> i32 {
|
||||
let (n, m) = (s.len(), t.len());
|
||||
let mut dp = vec![vec![0; m + 1]; n + 1];
|
||||
// 狀態轉移:首行首列
|
||||
for i in 1..=n {
|
||||
dp[i][0] = i as i32;
|
||||
}
|
||||
for j in 1..m {
|
||||
dp[0][j] = j as i32;
|
||||
}
|
||||
// 狀態轉移:其餘行和列
|
||||
for i in 1..=n {
|
||||
for j in 1..=m {
|
||||
if s.chars().nth(i - 1) == t.chars().nth(j - 1) {
|
||||
// 若兩字元相等,則直接跳過此兩字元
|
||||
dp[i][j] = dp[i - 1][j - 1];
|
||||
} else {
|
||||
// 最少編輯步數 = 插入、刪除、替換這三種操作的最少編輯步數 + 1
|
||||
dp[i][j] =
|
||||
std::cmp::min(std::cmp::min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
dp[n][m]
|
||||
}
|
||||
```
|
||||
|
||||
=== "C"
|
||||
|
||||
```c title="edit_distance.c"
|
||||
/* 編輯距離:動態規劃 */
|
||||
int editDistanceDP(char *s, char *t, int n, int m) {
|
||||
int **dp = malloc((n + 1) * sizeof(int *));
|
||||
for (int i = 0; i <= n; i++) {
|
||||
dp[i] = calloc(m + 1, sizeof(int));
|
||||
}
|
||||
// 狀態轉移:首行首列
|
||||
for (int i = 1; i <= n; i++) {
|
||||
dp[i][0] = i;
|
||||
}
|
||||
for (int j = 1; j <= m; j++) {
|
||||
dp[0][j] = j;
|
||||
}
|
||||
// 狀態轉移:其餘行和列
|
||||
for (int i = 1; i <= n; i++) {
|
||||
for (int j = 1; j <= m; j++) {
|
||||
if (s[i - 1] == t[j - 1]) {
|
||||
// 若兩字元相等,則直接跳過此兩字元
|
||||
dp[i][j] = dp[i - 1][j - 1];
|
||||
} else {
|
||||
// 最少編輯步數 = 插入、刪除、替換這三種操作的最少編輯步數 + 1
|
||||
dp[i][j] = myMin(myMin(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
int res = dp[n][m];
|
||||
// 釋放記憶體
|
||||
for (int i = 0; i <= n; i++) {
|
||||
free(dp[i]);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
```
|
||||
|
||||
=== "Kotlin"
|
||||
|
||||
```kotlin title="edit_distance.kt"
|
||||
/* 編輯距離:動態規劃 */
|
||||
fun editDistanceDP(s: String, t: String): Int {
|
||||
val n = s.length
|
||||
val m = t.length
|
||||
val dp = Array(n + 1) { IntArray(m + 1) }
|
||||
// 狀態轉移:首行首列
|
||||
for (i in 1..n) {
|
||||
dp[i][0] = i
|
||||
}
|
||||
for (j in 1..m) {
|
||||
dp[0][j] = j
|
||||
}
|
||||
// 狀態轉移:其餘行和列
|
||||
for (i in 1..n) {
|
||||
for (j in 1..m) {
|
||||
if (s[i - 1] == t[j - 1]) {
|
||||
// 若兩字元相等,則直接跳過此兩字元
|
||||
dp[i][j] = dp[i - 1][j - 1]
|
||||
} else {
|
||||
// 最少編輯步數 = 插入、刪除、替換這三種操作的最少編輯步數 + 1
|
||||
dp[i][j] =
|
||||
(min(
|
||||
min(dp[i][j - 1].toDouble(), dp[i - 1][j].toDouble()),
|
||||
dp[i - 1][j - 1].toDouble()
|
||||
) + 1).toInt()
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][m]
|
||||
}
|
||||
```
|
||||
|
||||
=== "Ruby"
|
||||
|
||||
```ruby title="edit_distance.rb"
|
||||
[class]{}-[func]{edit_distance_dp}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
||||
```zig title="edit_distance.zig"
|
||||
// 編輯距離:動態規劃
|
||||
fn editDistanceDP(comptime s: []const u8, comptime t: []const u8) i32 {
|
||||
comptime var n = s.len;
|
||||
comptime var m = t.len;
|
||||
var dp = [_][m + 1]i32{[_]i32{0} ** (m + 1)} ** (n + 1);
|
||||
// 狀態轉移:首行首列
|
||||
for (1..n + 1) |i| {
|
||||
dp[i][0] = @intCast(i);
|
||||
}
|
||||
for (1..m + 1) |j| {
|
||||
dp[0][j] = @intCast(j);
|
||||
}
|
||||
// 狀態轉移:其餘行和列
|
||||
for (1..n + 1) |i| {
|
||||
for (1..m + 1) |j| {
|
||||
if (s[i - 1] == t[j - 1]) {
|
||||
// 若兩字元相等,則直接跳過此兩字元
|
||||
dp[i][j] = dp[i - 1][j - 1];
|
||||
} else {
|
||||
// 最少編輯步數 = 插入、刪除、替換這三種操作的最少編輯步數 + 1
|
||||
dp[i][j] = @min(@min(dp[i][j - 1], dp[i - 1][j]), dp[i - 1][j - 1]) + 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
return dp[n][m];
|
||||
}
|
||||
```
|
||||
|
||||
??? pythontutor "視覺化執行"
|
||||
|
||||
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20edit_distance_dp%28s%3A%20str,%20t%3A%20str%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%BC%96%E8%BE%91%E8%B7%9D%E7%A6%BB%EF%BC%9A%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%22%22%22%0A%20%20%20%20n,%20m%20%3D%20len%28s%29,%20len%28t%29%0A%20%20%20%20dp%20%3D%20%5B%5B0%5D%20*%20%28m%20%2B%201%29%20for%20_%20in%20range%28n%20%2B%201%29%5D%0A%20%20%20%20%23%20%E7%8A%B6%E6%80%81%E8%BD%AC%E7%A7%BB%EF%BC%9A%E9%A6%96%E8%A1%8C%E9%A6%96%E5%88%97%0A%20%20%20%20for%20i%20in%20range%281,%20n%20%2B%201%29%3A%0A%20%20%20%20%20%20%20%20dp%5Bi%5D%5B0%5D%20%3D%20i%0A%20%20%20%20for%20j%20in%20range%281,%20m%20%2B%201%29%3A%0A%20%20%20%20%20%20%20%20dp%5B0%5D%5Bj%5D%20%3D%20j%0A%20%20%20%20%23%20%E7%8A%B6%E6%80%81%E8%BD%AC%E7%A7%BB%EF%BC%9A%E5%85%B6%E4%BD%99%E8%A1%8C%E5%92%8C%E5%88%97%0A%20%20%20%20for%20i%20in%20range%281,%20n%20%2B%201%29%3A%0A%20%20%20%20%20%20%20%20for%20j%20in%20range%281,%20m%20%2B%201%29%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20s%5Bi%20-%201%5D%20%3D%3D%20t%5Bj%20-%201%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E8%8B%A5%E4%B8%A4%E5%AD%97%E7%AC%A6%E7%9B%B8%E7%AD%89%EF%BC%8C%E5%88%99%E7%9B%B4%E6%8E%A5%E8%B7%B3%E8%BF%87%E6%AD%A4%E4%B8%A4%E5%AD%97%E7%AC%A6%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20dp%5Bi%5D%5Bj%5D%20%3D%20dp%5Bi%20-%201%5D%5Bj%20-%201%5D%0A%20%20%20%20%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%9C%80%E5%B0%91%E7%BC%96%E8%BE%91%E6%AD%A5%E6%95%B0%20%3D%20%E6%8F%92%E5%85%A5%E3%80%81%E5%88%A0%E9%99%A4%E3%80%81%E6%9B%BF%E6%8D%A2%E8%BF%99%E4%B8%89%E7%A7%8D%E6%93%8D%E4%BD%9C%E7%9A%84%E6%9C%80%E5%B0%91%E7%BC%96%E8%BE%91%E6%AD%A5%E6%95%B0%20%2B%201%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20dp%5Bi%5D%5Bj%5D%20%3D%20min%28dp%5Bi%5D%5Bj%20-%201%5D,%20dp%5Bi%20-%201%5D%5Bj%5D,%20dp%5Bi%20-%201%5D%5Bj%20-%201%5D%29%20%2B%201%0A%20%20%20%20return%20dp%5Bn%5D%5Bm%5D%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20s%20%3D%20%22bag%22%0A%20%20%20%20t%20%3D%20%22pack%22%0A%20%20%20%20n,%20m%20%3D%20len%28s%29,%20len%28t%29%0A%0A%20%20%20%20%23%20%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%0A%20%20%20%20res%20%3D%20edit_distance_dp%28s,%20t%29%0A%20%20%20%20print%28f%22%E5%B0%86%20%7Bs%7D%20%E6%9B%B4%E6%94%B9%E4%B8%BA%20%7Bt%7D%20%E6%9C%80%E5%B0%91%E9%9C%80%E8%A6%81%E7%BC%96%E8%BE%91%20%7Bres%7D%20%E6%AD%A5%22%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=6&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
||||
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20edit_distance_dp%28s%3A%20str,%20t%3A%20str%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%BC%96%E8%BE%91%E8%B7%9D%E7%A6%BB%EF%BC%9A%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%22%22%22%0A%20%20%20%20n,%20m%20%3D%20len%28s%29,%20len%28t%29%0A%20%20%20%20dp%20%3D%20%5B%5B0%5D%20*%20%28m%20%2B%201%29%20for%20_%20in%20range%28n%20%2B%201%29%5D%0A%20%20%20%20%23%20%E7%8A%B6%E6%80%81%E8%BD%AC%E7%A7%BB%EF%BC%9A%E9%A6%96%E8%A1%8C%E9%A6%96%E5%88%97%0A%20%20%20%20for%20i%20in%20range%281,%20n%20%2B%201%29%3A%0A%20%20%20%20%20%20%20%20dp%5Bi%5D%5B0%5D%20%3D%20i%0A%20%20%20%20for%20j%20in%20range%281,%20m%20%2B%201%29%3A%0A%20%20%20%20%20%20%20%20dp%5B0%5D%5Bj%5D%20%3D%20j%0A%20%20%20%20%23%20%E7%8A%B6%E6%80%81%E8%BD%AC%E7%A7%BB%EF%BC%9A%E5%85%B6%E4%BD%99%E8%A1%8C%E5%92%8C%E5%88%97%0A%20%20%20%20for%20i%20in%20range%281,%20n%20%2B%201%29%3A%0A%20%20%20%20%20%20%20%20for%20j%20in%20range%281,%20m%20%2B%201%29%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20s%5Bi%20-%201%5D%20%3D%3D%20t%5Bj%20-%201%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E8%8B%A5%E4%B8%A4%E5%AD%97%E7%AC%A6%E7%9B%B8%E7%AD%89%EF%BC%8C%E5%88%99%E7%9B%B4%E6%8E%A5%E8%B7%B3%E8%BF%87%E6%AD%A4%E4%B8%A4%E5%AD%97%E7%AC%A6%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20dp%5Bi%5D%5Bj%5D%20%3D%20dp%5Bi%20-%201%5D%5Bj%20-%201%5D%0A%20%20%20%20%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%9C%80%E5%B0%91%E7%BC%96%E8%BE%91%E6%AD%A5%E6%95%B0%20%3D%20%E6%8F%92%E5%85%A5%E3%80%81%E5%88%A0%E9%99%A4%E3%80%81%E6%9B%BF%E6%8D%A2%E8%BF%99%E4%B8%89%E7%A7%8D%E6%93%8D%E4%BD%9C%E7%9A%84%E6%9C%80%E5%B0%91%E7%BC%96%E8%BE%91%E6%AD%A5%E6%95%B0%20%2B%201%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20dp%5Bi%5D%5Bj%5D%20%3D%20min%28dp%5Bi%5D%5Bj%20-%201%5D,%20dp%5Bi%20-%201%5D%5Bj%5D,%20dp%5Bi%20-%201%5D%5Bj%20-%201%5D%29%20%2B%201%0A%20%20%20%20return%20dp%5Bn%5D%5Bm%5D%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20s%20%3D%20%22bag%22%0A%20%20%20%20t%20%3D%20%22pack%22%0A%20%20%20%20n,%20m%20%3D%20len%28s%29,%20len%28t%29%0A%0A%20%20%20%20%23%20%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%0A%20%20%20%20res%20%3D%20edit_distance_dp%28s,%20t%29%0A%20%20%20%20print%28f%22%E5%B0%86%20%7Bs%7D%20%E6%9B%B4%E6%94%B9%E4%B8%BA%20%7Bt%7D%20%E6%9C%80%E5%B0%91%E9%9C%80%E8%A6%81%E7%BC%96%E8%BE%91%20%7Bres%7D%20%E6%AD%A5%22%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=6&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
|
||||
|
||||
如圖 14-30 所示,編輯距離問題的狀態轉移過程與背包問題非常類似,都可以看作填寫一個二維網格的過程。
|
||||
|
||||
=== "<1>"
|
||||
{ class="animation-figure" }
|
||||
|
||||
=== "<2>"
|
||||
{ class="animation-figure" }
|
||||
|
||||
=== "<3>"
|
||||
{ class="animation-figure" }
|
||||
|
||||
=== "<4>"
|
||||
{ class="animation-figure" }
|
||||
|
||||
=== "<5>"
|
||||
{ class="animation-figure" }
|
||||
|
||||
=== "<6>"
|
||||
{ class="animation-figure" }
|
||||
|
||||
=== "<7>"
|
||||
{ class="animation-figure" }
|
||||
|
||||
=== "<8>"
|
||||
{ class="animation-figure" }
|
||||
|
||||
=== "<9>"
|
||||
{ class="animation-figure" }
|
||||
|
||||
=== "<10>"
|
||||
{ class="animation-figure" }
|
||||
|
||||
=== "<11>"
|
||||
{ class="animation-figure" }
|
||||
|
||||
=== "<12>"
|
||||
{ class="animation-figure" }
|
||||
|
||||
=== "<13>"
|
||||
{ class="animation-figure" }
|
||||
|
||||
=== "<14>"
|
||||
{ class="animation-figure" }
|
||||
|
||||
=== "<15>"
|
||||
{ class="animation-figure" }
|
||||
|
||||
<p align="center"> 圖 14-30 編輯距離的動態規劃過程 </p>
|
||||
|
||||
### 3. 空間最佳化
|
||||
|
||||
由於 $dp[i,j]$ 是由上方 $dp[i-1, j]$、左方 $dp[i, j-1]$、左上方 $dp[i-1, j-1]$ 轉移而來的,而正序走訪會丟失左上方 $dp[i-1, j-1]$ ,倒序走訪無法提前構建 $dp[i, j-1]$ ,因此兩種走訪順序都不可取。
|
||||
|
||||
為此,我們可以使用一個變數 `leftup` 來暫存左上方的解 $dp[i-1, j-1]$ ,從而只需考慮左方和上方的解。此時的情況與完全背包問題相同,可使用正序走訪。程式碼如下所示:
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title="edit_distance.py"
|
||||
def edit_distance_dp_comp(s: str, t: str) -> int:
|
||||
"""編輯距離:空間最佳化後的動態規劃"""
|
||||
n, m = len(s), len(t)
|
||||
dp = [0] * (m + 1)
|
||||
# 狀態轉移:首行
|
||||
for j in range(1, m + 1):
|
||||
dp[j] = j
|
||||
# 狀態轉移:其餘行
|
||||
for i in range(1, n + 1):
|
||||
# 狀態轉移:首列
|
||||
leftup = dp[0] # 暫存 dp[i-1, j-1]
|
||||
dp[0] += 1
|
||||
# 狀態轉移:其餘列
|
||||
for j in range(1, m + 1):
|
||||
temp = dp[j]
|
||||
if s[i - 1] == t[j - 1]:
|
||||
# 若兩字元相等,則直接跳過此兩字元
|
||||
dp[j] = leftup
|
||||
else:
|
||||
# 最少編輯步數 = 插入、刪除、替換這三種操作的最少編輯步數 + 1
|
||||
dp[j] = min(dp[j - 1], dp[j], leftup) + 1
|
||||
leftup = temp # 更新為下一輪的 dp[i-1, j-1]
|
||||
return dp[m]
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title="edit_distance.cpp"
|
||||
/* 編輯距離:空間最佳化後的動態規劃 */
|
||||
int editDistanceDPComp(string s, string t) {
|
||||
int n = s.length(), m = t.length();
|
||||
vector<int> dp(m + 1, 0);
|
||||
// 狀態轉移:首行
|
||||
for (int j = 1; j <= m; j++) {
|
||||
dp[j] = j;
|
||||
}
|
||||
// 狀態轉移:其餘行
|
||||
for (int i = 1; i <= n; i++) {
|
||||
// 狀態轉移:首列
|
||||
int leftup = dp[0]; // 暫存 dp[i-1, j-1]
|
||||
dp[0] = i;
|
||||
// 狀態轉移:其餘列
|
||||
for (int j = 1; j <= m; j++) {
|
||||
int temp = dp[j];
|
||||
if (s[i - 1] == t[j - 1]) {
|
||||
// 若兩字元相等,則直接跳過此兩字元
|
||||
dp[j] = leftup;
|
||||
} else {
|
||||
// 最少編輯步數 = 插入、刪除、替換這三種操作的最少編輯步數 + 1
|
||||
dp[j] = min(min(dp[j - 1], dp[j]), leftup) + 1;
|
||||
}
|
||||
leftup = temp; // 更新為下一輪的 dp[i-1, j-1]
|
||||
}
|
||||
}
|
||||
return dp[m];
|
||||
}
|
||||
```
|
||||
|
||||
=== "Java"
|
||||
|
||||
```java title="edit_distance.java"
|
||||
/* 編輯距離:空間最佳化後的動態規劃 */
|
||||
int editDistanceDPComp(String s, String t) {
|
||||
int n = s.length(), m = t.length();
|
||||
int[] dp = new int[m + 1];
|
||||
// 狀態轉移:首行
|
||||
for (int j = 1; j <= m; j++) {
|
||||
dp[j] = j;
|
||||
}
|
||||
// 狀態轉移:其餘行
|
||||
for (int i = 1; i <= n; i++) {
|
||||
// 狀態轉移:首列
|
||||
int leftup = dp[0]; // 暫存 dp[i-1, j-1]
|
||||
dp[0] = i;
|
||||
// 狀態轉移:其餘列
|
||||
for (int j = 1; j <= m; j++) {
|
||||
int temp = dp[j];
|
||||
if (s.charAt(i - 1) == t.charAt(j - 1)) {
|
||||
// 若兩字元相等,則直接跳過此兩字元
|
||||
dp[j] = leftup;
|
||||
} else {
|
||||
// 最少編輯步數 = 插入、刪除、替換這三種操作的最少編輯步數 + 1
|
||||
dp[j] = Math.min(Math.min(dp[j - 1], dp[j]), leftup) + 1;
|
||||
}
|
||||
leftup = temp; // 更新為下一輪的 dp[i-1, j-1]
|
||||
}
|
||||
}
|
||||
return dp[m];
|
||||
}
|
||||
```
|
||||
|
||||
=== "C#"
|
||||
|
||||
```csharp title="edit_distance.cs"
|
||||
/* 編輯距離:空間最佳化後的動態規劃 */
|
||||
int EditDistanceDPComp(string s, string t) {
|
||||
int n = s.Length, m = t.Length;
|
||||
int[] dp = new int[m + 1];
|
||||
// 狀態轉移:首行
|
||||
for (int j = 1; j <= m; j++) {
|
||||
dp[j] = j;
|
||||
}
|
||||
// 狀態轉移:其餘行
|
||||
for (int i = 1; i <= n; i++) {
|
||||
// 狀態轉移:首列
|
||||
int leftup = dp[0]; // 暫存 dp[i-1, j-1]
|
||||
dp[0] = i;
|
||||
// 狀態轉移:其餘列
|
||||
for (int j = 1; j <= m; j++) {
|
||||
int temp = dp[j];
|
||||
if (s[i - 1] == t[j - 1]) {
|
||||
// 若兩字元相等,則直接跳過此兩字元
|
||||
dp[j] = leftup;
|
||||
} else {
|
||||
// 最少編輯步數 = 插入、刪除、替換這三種操作的最少編輯步數 + 1
|
||||
dp[j] = Math.Min(Math.Min(dp[j - 1], dp[j]), leftup) + 1;
|
||||
}
|
||||
leftup = temp; // 更新為下一輪的 dp[i-1, j-1]
|
||||
}
|
||||
}
|
||||
return dp[m];
|
||||
}
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title="edit_distance.go"
|
||||
/* 編輯距離:空間最佳化後的動態規劃 */
|
||||
func editDistanceDPComp(s string, t string) int {
|
||||
n := len(s)
|
||||
m := len(t)
|
||||
dp := make([]int, m+1)
|
||||
// 狀態轉移:首行
|
||||
for j := 1; j <= m; j++ {
|
||||
dp[j] = j
|
||||
}
|
||||
// 狀態轉移:其餘行
|
||||
for i := 1; i <= n; i++ {
|
||||
// 狀態轉移:首列
|
||||
leftUp := dp[0] // 暫存 dp[i-1, j-1]
|
||||
dp[0] = i
|
||||
// 狀態轉移:其餘列
|
||||
for j := 1; j <= m; j++ {
|
||||
temp := dp[j]
|
||||
if s[i-1] == t[j-1] {
|
||||
// 若兩字元相等,則直接跳過此兩字元
|
||||
dp[j] = leftUp
|
||||
} else {
|
||||
// 最少編輯步數 = 插入、刪除、替換這三種操作的最少編輯步數 + 1
|
||||
dp[j] = MinInt(MinInt(dp[j-1], dp[j]), leftUp) + 1
|
||||
}
|
||||
leftUp = temp // 更新為下一輪的 dp[i-1, j-1]
|
||||
}
|
||||
}
|
||||
return dp[m]
|
||||
}
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title="edit_distance.swift"
|
||||
/* 編輯距離:空間最佳化後的動態規劃 */
|
||||
func editDistanceDPComp(s: String, t: String) -> Int {
|
||||
let n = s.utf8CString.count
|
||||
let m = t.utf8CString.count
|
||||
var dp = Array(repeating: 0, count: m + 1)
|
||||
// 狀態轉移:首行
|
||||
for j in 1 ... m {
|
||||
dp[j] = j
|
||||
}
|
||||
// 狀態轉移:其餘行
|
||||
for i in 1 ... n {
|
||||
// 狀態轉移:首列
|
||||
var leftup = dp[0] // 暫存 dp[i-1, j-1]
|
||||
dp[0] = i
|
||||
// 狀態轉移:其餘列
|
||||
for j in 1 ... m {
|
||||
let temp = dp[j]
|
||||
if s.utf8CString[i - 1] == t.utf8CString[j - 1] {
|
||||
// 若兩字元相等,則直接跳過此兩字元
|
||||
dp[j] = leftup
|
||||
} else {
|
||||
// 最少編輯步數 = 插入、刪除、替換這三種操作的最少編輯步數 + 1
|
||||
dp[j] = min(min(dp[j - 1], dp[j]), leftup) + 1
|
||||
}
|
||||
leftup = temp // 更新為下一輪的 dp[i-1, j-1]
|
||||
}
|
||||
}
|
||||
return dp[m]
|
||||
}
|
||||
```
|
||||
|
||||
=== "JS"
|
||||
|
||||
```javascript title="edit_distance.js"
|
||||
/* 編輯距離:狀態壓縮後的動態規劃 */
|
||||
function editDistanceDPComp(s, t) {
|
||||
const n = s.length,
|
||||
m = t.length;
|
||||
const dp = new Array(m + 1).fill(0);
|
||||
// 狀態轉移:首行
|
||||
for (let j = 1; j <= m; j++) {
|
||||
dp[j] = j;
|
||||
}
|
||||
// 狀態轉移:其餘行
|
||||
for (let i = 1; i <= n; i++) {
|
||||
// 狀態轉移:首列
|
||||
let leftup = dp[0]; // 暫存 dp[i-1, j-1]
|
||||
dp[0] = i;
|
||||
// 狀態轉移:其餘列
|
||||
for (let j = 1; j <= m; j++) {
|
||||
const temp = dp[j];
|
||||
if (s.charAt(i - 1) === t.charAt(j - 1)) {
|
||||
// 若兩字元相等,則直接跳過此兩字元
|
||||
dp[j] = leftup;
|
||||
} else {
|
||||
// 最少編輯步數 = 插入、刪除、替換這三種操作的最少編輯步數 + 1
|
||||
dp[j] = Math.min(dp[j - 1], dp[j], leftup) + 1;
|
||||
}
|
||||
leftup = temp; // 更新為下一輪的 dp[i-1, j-1]
|
||||
}
|
||||
}
|
||||
return dp[m];
|
||||
}
|
||||
```
|
||||
|
||||
=== "TS"
|
||||
|
||||
```typescript title="edit_distance.ts"
|
||||
/* 編輯距離:狀態壓縮後的動態規劃 */
|
||||
function editDistanceDPComp(s: string, t: string): number {
|
||||
const n = s.length,
|
||||
m = t.length;
|
||||
const dp = new Array(m + 1).fill(0);
|
||||
// 狀態轉移:首行
|
||||
for (let j = 1; j <= m; j++) {
|
||||
dp[j] = j;
|
||||
}
|
||||
// 狀態轉移:其餘行
|
||||
for (let i = 1; i <= n; i++) {
|
||||
// 狀態轉移:首列
|
||||
let leftup = dp[0]; // 暫存 dp[i-1, j-1]
|
||||
dp[0] = i;
|
||||
// 狀態轉移:其餘列
|
||||
for (let j = 1; j <= m; j++) {
|
||||
const temp = dp[j];
|
||||
if (s.charAt(i - 1) === t.charAt(j - 1)) {
|
||||
// 若兩字元相等,則直接跳過此兩字元
|
||||
dp[j] = leftup;
|
||||
} else {
|
||||
// 最少編輯步數 = 插入、刪除、替換這三種操作的最少編輯步數 + 1
|
||||
dp[j] = Math.min(dp[j - 1], dp[j], leftup) + 1;
|
||||
}
|
||||
leftup = temp; // 更新為下一輪的 dp[i-1, j-1]
|
||||
}
|
||||
}
|
||||
return dp[m];
|
||||
}
|
||||
```
|
||||
|
||||
=== "Dart"
|
||||
|
||||
```dart title="edit_distance.dart"
|
||||
/* 編輯距離:空間最佳化後的動態規劃 */
|
||||
int editDistanceDPComp(String s, String t) {
|
||||
int n = s.length, m = t.length;
|
||||
List<int> dp = List.filled(m + 1, 0);
|
||||
// 狀態轉移:首行
|
||||
for (int j = 1; j <= m; j++) {
|
||||
dp[j] = j;
|
||||
}
|
||||
// 狀態轉移:其餘行
|
||||
for (int i = 1; i <= n; i++) {
|
||||
// 狀態轉移:首列
|
||||
int leftup = dp[0]; // 暫存 dp[i-1, j-1]
|
||||
dp[0] = i;
|
||||
// 狀態轉移:其餘列
|
||||
for (int j = 1; j <= m; j++) {
|
||||
int temp = dp[j];
|
||||
if (s[i - 1] == t[j - 1]) {
|
||||
// 若兩字元相等,則直接跳過此兩字元
|
||||
dp[j] = leftup;
|
||||
} else {
|
||||
// 最少編輯步數 = 插入、刪除、替換這三種操作的最少編輯步數 + 1
|
||||
dp[j] = min(min(dp[j - 1], dp[j]), leftup) + 1;
|
||||
}
|
||||
leftup = temp; // 更新為下一輪的 dp[i-1, j-1]
|
||||
}
|
||||
}
|
||||
return dp[m];
|
||||
}
|
||||
```
|
||||
|
||||
=== "Rust"
|
||||
|
||||
```rust title="edit_distance.rs"
|
||||
/* 編輯距離:空間最佳化後的動態規劃 */
|
||||
fn edit_distance_dp_comp(s: &str, t: &str) -> i32 {
|
||||
let (n, m) = (s.len(), t.len());
|
||||
let mut dp = vec![0; m + 1];
|
||||
// 狀態轉移:首行
|
||||
for j in 1..m {
|
||||
dp[j] = j as i32;
|
||||
}
|
||||
// 狀態轉移:其餘行
|
||||
for i in 1..=n {
|
||||
// 狀態轉移:首列
|
||||
let mut leftup = dp[0]; // 暫存 dp[i-1, j-1]
|
||||
dp[0] = i as i32;
|
||||
// 狀態轉移:其餘列
|
||||
for j in 1..=m {
|
||||
let temp = dp[j];
|
||||
if s.chars().nth(i - 1) == t.chars().nth(j - 1) {
|
||||
// 若兩字元相等,則直接跳過此兩字元
|
||||
dp[j] = leftup;
|
||||
} else {
|
||||
// 最少編輯步數 = 插入、刪除、替換這三種操作的最少編輯步數 + 1
|
||||
dp[j] = std::cmp::min(std::cmp::min(dp[j - 1], dp[j]), leftup) + 1;
|
||||
}
|
||||
leftup = temp; // 更新為下一輪的 dp[i-1, j-1]
|
||||
}
|
||||
}
|
||||
dp[m]
|
||||
}
|
||||
```
|
||||
|
||||
=== "C"
|
||||
|
||||
```c title="edit_distance.c"
|
||||
/* 編輯距離:空間最佳化後的動態規劃 */
|
||||
int editDistanceDPComp(char *s, char *t, int n, int m) {
|
||||
int *dp = calloc(m + 1, sizeof(int));
|
||||
// 狀態轉移:首行
|
||||
for (int j = 1; j <= m; j++) {
|
||||
dp[j] = j;
|
||||
}
|
||||
// 狀態轉移:其餘行
|
||||
for (int i = 1; i <= n; i++) {
|
||||
// 狀態轉移:首列
|
||||
int leftup = dp[0]; // 暫存 dp[i-1, j-1]
|
||||
dp[0] = i;
|
||||
// 狀態轉移:其餘列
|
||||
for (int j = 1; j <= m; j++) {
|
||||
int temp = dp[j];
|
||||
if (s[i - 1] == t[j - 1]) {
|
||||
// 若兩字元相等,則直接跳過此兩字元
|
||||
dp[j] = leftup;
|
||||
} else {
|
||||
// 最少編輯步數 = 插入、刪除、替換這三種操作的最少編輯步數 + 1
|
||||
dp[j] = myMin(myMin(dp[j - 1], dp[j]), leftup) + 1;
|
||||
}
|
||||
leftup = temp; // 更新為下一輪的 dp[i-1, j-1]
|
||||
}
|
||||
}
|
||||
int res = dp[m];
|
||||
// 釋放記憶體
|
||||
free(dp);
|
||||
return res;
|
||||
}
|
||||
```
|
||||
|
||||
=== "Kotlin"
|
||||
|
||||
```kotlin title="edit_distance.kt"
|
||||
/* 編輯距離:空間最佳化後的動態規劃 */
|
||||
fun editDistanceDPComp(s: String, t: String): Int {
|
||||
val n = s.length
|
||||
val m = t.length
|
||||
val dp = IntArray(m + 1)
|
||||
// 狀態轉移:首行
|
||||
for (j in 1..m) {
|
||||
dp[j] = j
|
||||
}
|
||||
// 狀態轉移:其餘行
|
||||
for (i in 1..n) {
|
||||
// 狀態轉移:首列
|
||||
var leftup = dp[0] // 暫存 dp[i-1, j-1]
|
||||
dp[0] = i
|
||||
// 狀態轉移:其餘列
|
||||
for (j in 1..m) {
|
||||
val temp = dp[j]
|
||||
if (s[i - 1] == t[j - 1]) {
|
||||
// 若兩字元相等,則直接跳過此兩字元
|
||||
dp[j] = leftup
|
||||
} else {
|
||||
// 最少編輯步數 = 插入、刪除、替換這三種操作的最少編輯步數 + 1
|
||||
dp[j] = (min(min(dp[j - 1].toDouble(), dp[j].toDouble()), leftup.toDouble()) + 1).toInt()
|
||||
}
|
||||
leftup = temp // 更新為下一輪的 dp[i-1, j-1]
|
||||
}
|
||||
}
|
||||
return dp[m]
|
||||
}
|
||||
```
|
||||
|
||||
=== "Ruby"
|
||||
|
||||
```ruby title="edit_distance.rb"
|
||||
[class]{}-[func]{edit_distance_dp_comp}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
||||
```zig title="edit_distance.zig"
|
||||
// 編輯距離:空間最佳化後的動態規劃
|
||||
fn editDistanceDPComp(comptime s: []const u8, comptime t: []const u8) i32 {
|
||||
comptime var n = s.len;
|
||||
comptime var m = t.len;
|
||||
var dp = [_]i32{0} ** (m + 1);
|
||||
// 狀態轉移:首行
|
||||
for (1..m + 1) |j| {
|
||||
dp[j] = @intCast(j);
|
||||
}
|
||||
// 狀態轉移:其餘行
|
||||
for (1..n + 1) |i| {
|
||||
// 狀態轉移:首列
|
||||
var leftup = dp[0]; // 暫存 dp[i-1, j-1]
|
||||
dp[0] = @intCast(i);
|
||||
// 狀態轉移:其餘列
|
||||
for (1..m + 1) |j| {
|
||||
var temp = dp[j];
|
||||
if (s[i - 1] == t[j - 1]) {
|
||||
// 若兩字元相等,則直接跳過此兩字元
|
||||
dp[j] = leftup;
|
||||
} else {
|
||||
// 最少編輯步數 = 插入、刪除、替換這三種操作的最少編輯步數 + 1
|
||||
dp[j] = @min(@min(dp[j - 1], dp[j]), leftup) + 1;
|
||||
}
|
||||
leftup = temp; // 更新為下一輪的 dp[i-1, j-1]
|
||||
}
|
||||
}
|
||||
return dp[m];
|
||||
}
|
||||
```
|
||||
|
||||
??? pythontutor "視覺化執行"
|
||||
|
||||
<div style="height: 549px; width: 100%;"><iframe class="pythontutor-iframe" src="https://pythontutor.com/iframe-embed.html#code=def%20edit_distance_dp_comp%28s%3A%20str,%20t%3A%20str%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%BC%96%E8%BE%91%E8%B7%9D%E7%A6%BB%EF%BC%9A%E7%A9%BA%E9%97%B4%E4%BC%98%E5%8C%96%E5%90%8E%E7%9A%84%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%22%22%22%0A%20%20%20%20n,%20m%20%3D%20len%28s%29,%20len%28t%29%0A%20%20%20%20dp%20%3D%20%5B0%5D%20*%20%28m%20%2B%201%29%0A%20%20%20%20%23%20%E7%8A%B6%E6%80%81%E8%BD%AC%E7%A7%BB%EF%BC%9A%E9%A6%96%E8%A1%8C%0A%20%20%20%20for%20j%20in%20range%281,%20m%20%2B%201%29%3A%0A%20%20%20%20%20%20%20%20dp%5Bj%5D%20%3D%20j%0A%20%20%20%20%23%20%E7%8A%B6%E6%80%81%E8%BD%AC%E7%A7%BB%EF%BC%9A%E5%85%B6%E4%BD%99%E8%A1%8C%0A%20%20%20%20for%20i%20in%20range%281,%20n%20%2B%201%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E7%8A%B6%E6%80%81%E8%BD%AC%E7%A7%BB%EF%BC%9A%E9%A6%96%E5%88%97%0A%20%20%20%20%20%20%20%20leftup%20%3D%20dp%5B0%5D%20%20%23%20%E6%9A%82%E5%AD%98%20dp%5Bi-1,%20j-1%5D%0A%20%20%20%20%20%20%20%20dp%5B0%5D%20%2B%3D%201%0A%20%20%20%20%20%20%20%20%23%20%E7%8A%B6%E6%80%81%E8%BD%AC%E7%A7%BB%EF%BC%9A%E5%85%B6%E4%BD%99%E5%88%97%0A%20%20%20%20%20%20%20%20for%20j%20in%20range%281,%20m%20%2B%201%29%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20temp%20%3D%20dp%5Bj%5D%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20s%5Bi%20-%201%5D%20%3D%3D%20t%5Bj%20-%201%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E8%8B%A5%E4%B8%A4%E5%AD%97%E7%AC%A6%E7%9B%B8%E7%AD%89%EF%BC%8C%E5%88%99%E7%9B%B4%E6%8E%A5%E8%B7%B3%E8%BF%87%E6%AD%A4%E4%B8%A4%E5%AD%97%E7%AC%A6%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20dp%5Bj%5D%20%3D%20leftup%0A%20%20%20%20%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%9C%80%E5%B0%91%E7%BC%96%E8%BE%91%E6%AD%A5%E6%95%B0%20%3D%20%E6%8F%92%E5%85%A5%E3%80%81%E5%88%A0%E9%99%A4%E3%80%81%E6%9B%BF%E6%8D%A2%E8%BF%99%E4%B8%89%E7%A7%8D%E6%93%8D%E4%BD%9C%E7%9A%84%E6%9C%80%E5%B0%91%E7%BC%96%E8%BE%91%E6%AD%A5%E6%95%B0%20%2B%201%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20dp%5Bj%5D%20%3D%20min%28dp%5Bj%20-%201%5D,%20dp%5Bj%5D,%20leftup%29%20%2B%201%0A%20%20%20%20%20%20%20%20%20%20%20%20leftup%20%3D%20temp%20%20%23%20%E6%9B%B4%E6%96%B0%E4%B8%BA%E4%B8%8B%E4%B8%80%E8%BD%AE%E7%9A%84%20dp%5Bi-1,%20j-1%5D%0A%20%20%20%20return%20dp%5Bm%5D%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20s%20%3D%20%22bag%22%0A%20%20%20%20t%20%3D%20%22pack%22%0A%20%20%20%20n,%20m%20%3D%20len%28s%29,%20len%28t%29%0A%0A%20%20%20%20%23%20%E7%A9%BA%E9%97%B4%E4%BC%98%E5%8C%96%E5%90%8E%E7%9A%84%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%0A%20%20%20%20res%20%3D%20edit_distance_dp_comp%28s,%20t%29%0A%20%20%20%20print%28f%22%E5%B0%86%20%7Bs%7D%20%E6%9B%B4%E6%94%B9%E4%B8%BA%20%7Bt%7D%20%E6%9C%80%E5%B0%91%E9%9C%80%E8%A6%81%E7%BC%96%E8%BE%91%20%7Bres%7D%20%E6%AD%A5%22%29&codeDivHeight=472&codeDivWidth=350&cumulative=false&curInstr=6&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false"> </iframe></div>
|
||||
<div style="margin-top: 5px;"><a href="https://pythontutor.com/iframe-embed.html#code=def%20edit_distance_dp_comp%28s%3A%20str,%20t%3A%20str%29%20-%3E%20int%3A%0A%20%20%20%20%22%22%22%E7%BC%96%E8%BE%91%E8%B7%9D%E7%A6%BB%EF%BC%9A%E7%A9%BA%E9%97%B4%E4%BC%98%E5%8C%96%E5%90%8E%E7%9A%84%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%22%22%22%0A%20%20%20%20n,%20m%20%3D%20len%28s%29,%20len%28t%29%0A%20%20%20%20dp%20%3D%20%5B0%5D%20*%20%28m%20%2B%201%29%0A%20%20%20%20%23%20%E7%8A%B6%E6%80%81%E8%BD%AC%E7%A7%BB%EF%BC%9A%E9%A6%96%E8%A1%8C%0A%20%20%20%20for%20j%20in%20range%281,%20m%20%2B%201%29%3A%0A%20%20%20%20%20%20%20%20dp%5Bj%5D%20%3D%20j%0A%20%20%20%20%23%20%E7%8A%B6%E6%80%81%E8%BD%AC%E7%A7%BB%EF%BC%9A%E5%85%B6%E4%BD%99%E8%A1%8C%0A%20%20%20%20for%20i%20in%20range%281,%20n%20%2B%201%29%3A%0A%20%20%20%20%20%20%20%20%23%20%E7%8A%B6%E6%80%81%E8%BD%AC%E7%A7%BB%EF%BC%9A%E9%A6%96%E5%88%97%0A%20%20%20%20%20%20%20%20leftup%20%3D%20dp%5B0%5D%20%20%23%20%E6%9A%82%E5%AD%98%20dp%5Bi-1,%20j-1%5D%0A%20%20%20%20%20%20%20%20dp%5B0%5D%20%2B%3D%201%0A%20%20%20%20%20%20%20%20%23%20%E7%8A%B6%E6%80%81%E8%BD%AC%E7%A7%BB%EF%BC%9A%E5%85%B6%E4%BD%99%E5%88%97%0A%20%20%20%20%20%20%20%20for%20j%20in%20range%281,%20m%20%2B%201%29%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20temp%20%3D%20dp%5Bj%5D%0A%20%20%20%20%20%20%20%20%20%20%20%20if%20s%5Bi%20-%201%5D%20%3D%3D%20t%5Bj%20-%201%5D%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E8%8B%A5%E4%B8%A4%E5%AD%97%E7%AC%A6%E7%9B%B8%E7%AD%89%EF%BC%8C%E5%88%99%E7%9B%B4%E6%8E%A5%E8%B7%B3%E8%BF%87%E6%AD%A4%E4%B8%A4%E5%AD%97%E7%AC%A6%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20dp%5Bj%5D%20%3D%20leftup%0A%20%20%20%20%20%20%20%20%20%20%20%20else%3A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%23%20%E6%9C%80%E5%B0%91%E7%BC%96%E8%BE%91%E6%AD%A5%E6%95%B0%20%3D%20%E6%8F%92%E5%85%A5%E3%80%81%E5%88%A0%E9%99%A4%E3%80%81%E6%9B%BF%E6%8D%A2%E8%BF%99%E4%B8%89%E7%A7%8D%E6%93%8D%E4%BD%9C%E7%9A%84%E6%9C%80%E5%B0%91%E7%BC%96%E8%BE%91%E6%AD%A5%E6%95%B0%20%2B%201%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20dp%5Bj%5D%20%3D%20min%28dp%5Bj%20-%201%5D,%20dp%5Bj%5D,%20leftup%29%20%2B%201%0A%20%20%20%20%20%20%20%20%20%20%20%20leftup%20%3D%20temp%20%20%23%20%E6%9B%B4%E6%96%B0%E4%B8%BA%E4%B8%8B%E4%B8%80%E8%BD%AE%E7%9A%84%20dp%5Bi-1,%20j-1%5D%0A%20%20%20%20return%20dp%5Bm%5D%0A%0A%0A%22%22%22Driver%20Code%22%22%22%0Aif%20__name__%20%3D%3D%20%22__main__%22%3A%0A%20%20%20%20s%20%3D%20%22bag%22%0A%20%20%20%20t%20%3D%20%22pack%22%0A%20%20%20%20n,%20m%20%3D%20len%28s%29,%20len%28t%29%0A%0A%20%20%20%20%23%20%E7%A9%BA%E9%97%B4%E4%BC%98%E5%8C%96%E5%90%8E%E7%9A%84%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%92%0A%20%20%20%20res%20%3D%20edit_distance_dp_comp%28s,%20t%29%0A%20%20%20%20print%28f%22%E5%B0%86%20%7Bs%7D%20%E6%9B%B4%E6%94%B9%E4%B8%BA%20%7Bt%7D%20%E6%9C%80%E5%B0%91%E9%9C%80%E8%A6%81%E7%BC%96%E8%BE%91%20%7Bres%7D%20%E6%AD%A5%22%29&codeDivHeight=800&codeDivWidth=600&cumulative=false&curInstr=6&heapPrimitives=nevernest&origin=opt-frontend.js&py=311&rawInputLstJSON=%5B%5D&textReferences=false" target="_blank" rel="noopener noreferrer">全螢幕觀看 ></a></div>
|
24
zh-Hant/docs/chapter_dynamic_programming/index.md
Normal file
24
zh-Hant/docs/chapter_dynamic_programming/index.md
Normal file
@ -0,0 +1,24 @@
|
||||
---
|
||||
comments: true
|
||||
icon: material/table-pivot
|
||||
---
|
||||
|
||||
# 第 14 章 動態規劃
|
||||
|
||||
{ class="cover-image" }
|
||||
|
||||
!!! abstract
|
||||
|
||||
小溪匯入河流,江河匯入大海。
|
||||
|
||||
動態規劃將小問題的解彙集成大問題的答案,一步步引領我們走向解決問題的彼岸。
|
||||
|
||||
## Chapter Contents
|
||||
|
||||
- [14.1 初探動態規劃](https://www.hello-algo.com/en/chapter_dynamic_programming/intro_to_dynamic_programming/)
|
||||
- [14.2 DP 問題特性](https://www.hello-algo.com/en/chapter_dynamic_programming/dp_problem_features/)
|
||||
- [14.3 DP 解題思路](https://www.hello-algo.com/en/chapter_dynamic_programming/dp_solution_pipeline/)
|
||||
- [14.4 0-1 背包問題](https://www.hello-algo.com/en/chapter_dynamic_programming/knapsack_problem/)
|
||||
- [14.5 完全背包問題](https://www.hello-algo.com/en/chapter_dynamic_programming/unbounded_knapsack_problem/)
|
||||
- [14.6 編輯距離問題](https://www.hello-algo.com/en/chapter_dynamic_programming/edit_distance_problem/)
|
||||
- [14.7 小結](https://www.hello-algo.com/en/chapter_dynamic_programming/summary/)
|
File diff suppressed because it is too large
Load Diff
1488
zh-Hant/docs/chapter_dynamic_programming/knapsack_problem.md
Normal file
1488
zh-Hant/docs/chapter_dynamic_programming/knapsack_problem.md
Normal file
File diff suppressed because it is too large
Load Diff
27
zh-Hant/docs/chapter_dynamic_programming/summary.md
Normal file
27
zh-Hant/docs/chapter_dynamic_programming/summary.md
Normal file
@ -0,0 +1,27 @@
|
||||
---
|
||||
comments: true
|
||||
---
|
||||
|
||||
# 14.7 小結
|
||||
|
||||
- 動態規劃對問題進行分解,並透過儲存子問題的解來規避重複計算,提高計算效率。
|
||||
- 不考慮時間的前提下,所有動態規劃問題都可以用回溯(暴力搜尋)進行求解,但遞迴樹中存在大量的重疊子問題,效率極低。透過引入記憶化串列,可以儲存所有計算過的子問題的解,從而保證重疊子問題只被計算一次。
|
||||
- 記憶化搜尋是一種從頂至底的遞迴式解法,而與之對應的動態規劃是一種從底至頂的遞推式解法,其如同“填寫表格”一樣。由於當前狀態僅依賴某些區域性狀態,因此我們可以消除 $dp$ 表的一個維度,從而降低空間複雜度。
|
||||
- 子問題分解是一種通用的演算法思路,在分治、動態規劃、回溯中具有不同的性質。
|
||||
- 動態規劃問題有三大特性:重疊子問題、最優子結構、無後效性。
|
||||
- 如果原問題的最優解可以從子問題的最優解構建得來,則它就具有最優子結構。
|
||||
- 無後效性指對於一個狀態,其未來發展只與該狀態有關,而與過去經歷的所有狀態無關。許多組合最佳化問題不具有無後效性,無法使用動態規劃快速求解。
|
||||
|
||||
**背包問題**
|
||||
|
||||
- 背包問題是最典型的動態規劃問題之一,具有 0-1 背包、完全背包、多重背包等變種。
|
||||
- 0-1 背包的狀態定義為前 $i$ 個物品在剩餘容量為 $c$ 的背包中的最大價值。根據不放入背包和放入背包兩種決策,可得到最優子結構,並構建出狀態轉移方程。在空間最佳化中,由於每個狀態依賴正上方和左上方的狀態,因此需要倒序走訪串列,避免左上方狀態被覆蓋。
|
||||
- 完全背包問題的每種物品的選取數量無限制,因此選擇放入物品的狀態轉移與 0-1 背包問題不同。由於狀態依賴正上方和正左方的狀態,因此在空間最佳化中應當正序走訪。
|
||||
- 零錢兌換問題是完全背包問題的一個變種。它從求“最大”價值變為求“最小”硬幣數量,因此狀態轉移方程中的 $\max()$ 應改為 $\min()$ 。從追求“不超過”背包容量到追求“恰好”湊出目標金額,因此使用 $amt + 1$ 來表示“無法湊出目標金額”的無效解。
|
||||
- 零錢兌換問題 II 從求“最少硬幣數量”改為求“硬幣組合數量”,狀態轉移方程相應地從 $\min()$ 改為求和運算子。
|
||||
|
||||
**編輯距離問題**
|
||||
|
||||
- 編輯距離(Levenshtein 距離)用於衡量兩個字串之間的相似度,其定義為從一個字串到另一個字串的最少編輯步數,編輯操作包括新增、刪除、替換。
|
||||
- 編輯距離問題的狀態定義為將 $s$ 的前 $i$ 個字元更改為 $t$ 的前 $j$ 個字元所需的最少編輯步數。當 $s[i] \ne t[j]$ 時,具有三種決策:新增、刪除、替換,它們都有相應的剩餘子問題。據此便可以找出最優子結構與構建狀態轉移方程。而當 $s[i] = t[j]$ 時,無須編輯當前字元。
|
||||
- 在編輯距離中,狀態依賴其正上方、正左方、左上方的狀態,因此空間最佳化後正序或倒序走訪都無法正確地進行狀態轉移。為此,我們利用一個變數暫存左上方狀態,從而轉化到與完全背包問題等價的情況,可以在空間最佳化後進行正序走訪。
|
File diff suppressed because it is too large
Load Diff
Reference in New Issue
Block a user