mirror of
https://github.com/krahets/hello-algo.git
synced 2025-07-07 15:01:58 +08:00
deploy
This commit is contained in:
@ -4562,7 +4562,7 @@
|
|||||||
<h2 id="423">4.2.3 常见链表类型<a class="headerlink" href="#423" title="Permanent link">¶</a></h2>
|
<h2 id="423">4.2.3 常见链表类型<a class="headerlink" href="#423" title="Permanent link">¶</a></h2>
|
||||||
<p>如图 4-8 所示,常见的链表类型包括三种。</p>
|
<p>如图 4-8 所示,常见的链表类型包括三种。</p>
|
||||||
<ul>
|
<ul>
|
||||||
<li><strong>单向链表</strong>:即上述介绍的普通链表。单向链表的节点包含值和指向下一节点的引用两项数据。我们将首个节点称为头节点,将最后一个节点成为尾节点,尾节点指向空 <span class="arithmatex">\(\text{None}\)</span> 。</li>
|
<li><strong>单向链表</strong>:即上述介绍的普通链表。单向链表的节点包含值和指向下一节点的引用两项数据。我们将首个节点称为头节点,将最后一个节点称为尾节点,尾节点指向空 <span class="arithmatex">\(\text{None}\)</span> 。</li>
|
||||||
<li><strong>环形链表</strong>:如果我们令单向链表的尾节点指向头节点(即首尾相接),则得到一个环形链表。在环形链表中,任意节点都可以视作头节点。</li>
|
<li><strong>环形链表</strong>:如果我们令单向链表的尾节点指向头节点(即首尾相接),则得到一个环形链表。在环形链表中,任意节点都可以视作头节点。</li>
|
||||||
<li><strong>双向链表</strong>:与单向链表相比,双向链表记录了两个方向的引用。双向链表的节点定义同时包含指向后继节点(下一个节点)和前驱节点(上一个节点)的引用(指针)。相较于单向链表,双向链表更具灵活性,可以朝两个方向遍历链表,但相应地也需要占用更多的内存空间。</li>
|
<li><strong>双向链表</strong>:与单向链表相比,双向链表记录了两个方向的引用。双向链表的节点定义同时包含指向后继节点(下一个节点)和前驱节点(上一个节点)的引用(指针)。相较于单向链表,双向链表更具灵活性,可以朝两个方向遍历链表,但相应地也需要占用更多的内存空间。</li>
|
||||||
</ul>
|
</ul>
|
||||||
|
@ -3462,8 +3462,8 @@
|
|||||||
<div class="arithmatex">\[
|
<div class="arithmatex">\[
|
||||||
\begin{aligned}
|
\begin{aligned}
|
||||||
& 1 + (-2) \newline
|
& 1 + (-2) \newline
|
||||||
& \rightarrow 0000 \space 0001 + 1000 \space 0010 \newline
|
& \rightarrow 0000 \; 0001 + 1000 \; 0010 \newline
|
||||||
& = 1000 \space 0011 \newline
|
& = 1000 \; 0011 \newline
|
||||||
& \rightarrow -3
|
& \rightarrow -3
|
||||||
\end{aligned}
|
\end{aligned}
|
||||||
\]</div>
|
\]</div>
|
||||||
@ -3471,38 +3471,38 @@
|
|||||||
<div class="arithmatex">\[
|
<div class="arithmatex">\[
|
||||||
\begin{aligned}
|
\begin{aligned}
|
||||||
& 1 + (-2) \newline
|
& 1 + (-2) \newline
|
||||||
& \rightarrow 0000 \space 0001 \space \text{(原码)} + 1000 \space 0010 \space \text{(原码)} \newline
|
& \rightarrow 0000 \; 0001 \; \text{(原码)} + 1000 \; 0010 \; \text{(原码)} \newline
|
||||||
& = 0000 \space 0001 \space \text{(反码)} + 1111 \space 1101 \space \text{(反码)} \newline
|
& = 0000 \; 0001 \; \text{(反码)} + 1111 \; 1101 \; \text{(反码)} \newline
|
||||||
& = 1111 \space 1110 \space \text{(反码)} \newline
|
& = 1111 \; 1110 \; \text{(反码)} \newline
|
||||||
& = 1000 \space 0001 \space \text{(原码)} \newline
|
& = 1000 \; 0001 \; \text{(原码)} \newline
|
||||||
& \rightarrow -1
|
& \rightarrow -1
|
||||||
\end{aligned}
|
\end{aligned}
|
||||||
\]</div>
|
\]</div>
|
||||||
<p>另一方面,<strong>数字零的原码有 <span class="arithmatex">\(+0\)</span> 和 <span class="arithmatex">\(-0\)</span> 两种表示方式</strong>。这意味着数字零对应着两个不同的二进制编码,其可能会带来歧义。比如在条件判断中,如果没有区分正零和负零,则可能会导致判断结果出错。而如果我们想要处理正零和负零歧义,则需要引入额外的判断操作,其可能会降低计算机的运算效率。</p>
|
<p>另一方面,<strong>数字零的原码有 <span class="arithmatex">\(+0\)</span> 和 <span class="arithmatex">\(-0\)</span> 两种表示方式</strong>。这意味着数字零对应着两个不同的二进制编码,其可能会带来歧义。比如在条件判断中,如果没有区分正零和负零,则可能会导致判断结果出错。而如果我们想要处理正零和负零歧义,则需要引入额外的判断操作,其可能会降低计算机的运算效率。</p>
|
||||||
<div class="arithmatex">\[
|
<div class="arithmatex">\[
|
||||||
\begin{aligned}
|
\begin{aligned}
|
||||||
+0 & \rightarrow 0000 \space 0000 \newline
|
+0 & \rightarrow 0000 \; 0000 \newline
|
||||||
-0 & \rightarrow 1000 \space 0000
|
-0 & \rightarrow 1000 \; 0000
|
||||||
\end{aligned}
|
\end{aligned}
|
||||||
\]</div>
|
\]</div>
|
||||||
<p>与原码一样,反码也存在正负零歧义问题,因此计算机进一步引入了「补码 2's complement code」。我们先来观察一下负零的原码、反码、补码的转换过程:</p>
|
<p>与原码一样,反码也存在正负零歧义问题,因此计算机进一步引入了「补码 2's complement code」。我们先来观察一下负零的原码、反码、补码的转换过程:</p>
|
||||||
<div class="arithmatex">\[
|
<div class="arithmatex">\[
|
||||||
\begin{aligned}
|
\begin{aligned}
|
||||||
-0 \rightarrow \space & 1000 \space 0000 \space \text{(原码)} \newline
|
-0 \rightarrow \; & 1000 \; 0000 \; \text{(原码)} \newline
|
||||||
= \space & 1111 \space 1111 \space \text{(反码)} \newline
|
= \; & 1111 \; 1111 \; \text{(反码)} \newline
|
||||||
= 1 \space & 0000 \space 0000 \space \text{(补码)} \newline
|
= 1 \; & 0000 \; 0000 \; \text{(补码)} \newline
|
||||||
\end{aligned}
|
\end{aligned}
|
||||||
\]</div>
|
\]</div>
|
||||||
<p>在负零的反码基础上加 <span class="arithmatex">\(1\)</span> 会产生进位,但 <code>byte</code> 类型的长度只有 8 位,因此溢出到第 9 位的 <span class="arithmatex">\(1\)</span> 会被舍弃。也就是说,<strong>负零的补码为 <span class="arithmatex">\(0000 \space 0000\)</span> ,与正零的补码相同</strong>。这意味着在补码表示中只存在一个零,正负零歧义从而得到解决。</p>
|
<p>在负零的反码基础上加 <span class="arithmatex">\(1\)</span> 会产生进位,但 <code>byte</code> 类型的长度只有 8 位,因此溢出到第 9 位的 <span class="arithmatex">\(1\)</span> 会被舍弃。也就是说,<strong>负零的补码为 <span class="arithmatex">\(0000 \; 0000\)</span> ,与正零的补码相同</strong>。这意味着在补码表示中只存在一个零,正负零歧义从而得到解决。</p>
|
||||||
<p>还剩余最后一个疑惑:<code>byte</code> 类型的取值范围是 <span class="arithmatex">\([-128, 127]\)</span> ,多出来的一个负数 <span class="arithmatex">\(-128\)</span> 是如何得到的呢?我们注意到,区间 <span class="arithmatex">\([-127, +127]\)</span> 内的所有整数都有对应的原码、反码和补码,并且原码和补码之间是可以互相转换的。</p>
|
<p>还剩余最后一个疑惑:<code>byte</code> 类型的取值范围是 <span class="arithmatex">\([-128, 127]\)</span> ,多出来的一个负数 <span class="arithmatex">\(-128\)</span> 是如何得到的呢?我们注意到,区间 <span class="arithmatex">\([-127, +127]\)</span> 内的所有整数都有对应的原码、反码和补码,并且原码和补码之间是可以互相转换的。</p>
|
||||||
<p>然而,<strong>补码 <span class="arithmatex">\(1000 \space 0000\)</span> 是一个例外,它并没有对应的原码</strong>。根据转换方法,我们得到该补码的原码为 <span class="arithmatex">\(0000 \space 0000\)</span> 。这显然是矛盾的,因为该原码表示数字 <span class="arithmatex">\(0\)</span> ,它的补码应该是自身。计算机规定这个特殊的补码 <span class="arithmatex">\(1000 \space 0000\)</span> 代表 <span class="arithmatex">\(-128\)</span> 。实际上,<span class="arithmatex">\((-1) + (-127)\)</span> 在补码下的计算结果就是 <span class="arithmatex">\(-128\)</span> 。</p>
|
<p>然而,<strong>补码 <span class="arithmatex">\(1000 \; 0000\)</span> 是一个例外,它并没有对应的原码</strong>。根据转换方法,我们得到该补码的原码为 <span class="arithmatex">\(0000 \; 0000\)</span> 。这显然是矛盾的,因为该原码表示数字 <span class="arithmatex">\(0\)</span> ,它的补码应该是自身。计算机规定这个特殊的补码 <span class="arithmatex">\(1000 \; 0000\)</span> 代表 <span class="arithmatex">\(-128\)</span> 。实际上,<span class="arithmatex">\((-1) + (-127)\)</span> 在补码下的计算结果就是 <span class="arithmatex">\(-128\)</span> 。</p>
|
||||||
<div class="arithmatex">\[
|
<div class="arithmatex">\[
|
||||||
\begin{aligned}
|
\begin{aligned}
|
||||||
& (-127) + (-1) \newline
|
& (-127) + (-1) \newline
|
||||||
& \rightarrow 1111 \space 1111 \space \text{(原码)} + 1000 \space 0001 \space \text{(原码)} \newline
|
& \rightarrow 1111 \; 1111 \; \text{(原码)} + 1000 \; 0001 \; \text{(原码)} \newline
|
||||||
& = 1000 \space 0000 \space \text{(反码)} + 1111 \space 1110 \space \text{(反码)} \newline
|
& = 1000 \; 0000 \; \text{(反码)} + 1111 \; 1110 \; \text{(反码)} \newline
|
||||||
& = 1000 \space 0001 \space \text{(补码)} + 1111 \space 1111 \space \text{(补码)} \newline
|
& = 1000 \; 0001 \; \text{(补码)} + 1111 \; 1111 \; \text{(补码)} \newline
|
||||||
& = 1000 \space 0000 \space \text{(补码)} \newline
|
& = 1000 \; 0000 \; \text{(补码)} \newline
|
||||||
& \rightarrow -128
|
& \rightarrow -128
|
||||||
\end{aligned}
|
\end{aligned}
|
||||||
\]</div>
|
\]</div>
|
||||||
|
@ -3552,11 +3552,43 @@ dp[i] = \min(dp[i-1], dp[i-2]) + cost[i]
|
|||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.js</span><pre><span></span><code><a id="__codelineno-4-1" name="__codelineno-4-1" href="#__codelineno-4-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">minCostClimbingStairsDP</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.js</span><pre><span></span><code><a id="__codelineno-4-1" name="__codelineno-4-1" href="#__codelineno-4-1"></a><span class="cm">/* 爬楼梯最小代价:动态规划 */</span>
|
||||||
|
<a id="__codelineno-4-2" name="__codelineno-4-2" href="#__codelineno-4-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">minCostClimbingStairsDP</span><span class="p">(</span><span class="nx">cost</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-4-3" name="__codelineno-4-3" href="#__codelineno-4-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">.</span><span class="nx">length</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-4-4" name="__codelineno-4-4" href="#__codelineno-4-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-4-5" name="__codelineno-4-5" href="#__codelineno-4-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="nx">n</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-4-6" name="__codelineno-4-6" href="#__codelineno-4-6"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-4-7" name="__codelineno-4-7" href="#__codelineno-4-7"></a><span class="w"> </span><span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
|
||||||
|
<a id="__codelineno-4-8" name="__codelineno-4-8" href="#__codelineno-4-8"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="ow">new</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-4-9" name="__codelineno-4-9" href="#__codelineno-4-9"></a><span class="w"> </span><span class="c1">// 初始状态:预设最小子问题的解</span>
|
||||||
|
<a id="__codelineno-4-10" name="__codelineno-4-10" href="#__codelineno-4-10"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="mf">1</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-4-11" name="__codelineno-4-11" href="#__codelineno-4-11"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="mf">2</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-4-12" name="__codelineno-4-12" href="#__codelineno-4-12"></a><span class="w"> </span><span class="c1">// 状态转移:从较小子问题逐步求解较大子问题</span>
|
||||||
|
<a id="__codelineno-4-13" name="__codelineno-4-13" href="#__codelineno-4-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">3</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-4-14" name="__codelineno-4-14" href="#__codelineno-4-14"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">min</span><span class="p">(</span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">],</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">2</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="nx">i</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-4-15" name="__codelineno-4-15" href="#__codelineno-4-15"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-4-16" name="__codelineno-4-16" href="#__codelineno-4-16"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-4-17" name="__codelineno-4-17" href="#__codelineno-4-17"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.ts</span><pre><span></span><code><a id="__codelineno-5-1" name="__codelineno-5-1" href="#__codelineno-5-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">minCostClimbingStairsDP</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.ts</span><pre><span></span><code><a id="__codelineno-5-1" name="__codelineno-5-1" href="#__codelineno-5-1"></a><span class="cm">/* 爬楼梯最小代价:动态规划 */</span>
|
||||||
|
<a id="__codelineno-5-2" name="__codelineno-5-2" href="#__codelineno-5-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">minCostClimbingStairsDP</span><span class="p">(</span><span class="nx">cost</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o"><</span><span class="kt">number</span><span class="o">></span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-5-3" name="__codelineno-5-3" href="#__codelineno-5-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">.</span><span class="nx">length</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-5-4" name="__codelineno-5-4" href="#__codelineno-5-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-5-5" name="__codelineno-5-5" href="#__codelineno-5-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="nx">n</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-5-6" name="__codelineno-5-6" href="#__codelineno-5-6"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-5-7" name="__codelineno-5-7" href="#__codelineno-5-7"></a><span class="w"> </span><span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
|
||||||
|
<a id="__codelineno-5-8" name="__codelineno-5-8" href="#__codelineno-5-8"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="ow">new</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-5-9" name="__codelineno-5-9" href="#__codelineno-5-9"></a><span class="w"> </span><span class="c1">// 初始状态:预设最小子问题的解</span>
|
||||||
|
<a id="__codelineno-5-10" name="__codelineno-5-10" href="#__codelineno-5-10"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="mf">1</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-5-11" name="__codelineno-5-11" href="#__codelineno-5-11"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="mf">2</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-5-12" name="__codelineno-5-12" href="#__codelineno-5-12"></a><span class="w"> </span><span class="c1">// 状态转移:从较小子问题逐步求解较大子问题</span>
|
||||||
|
<a id="__codelineno-5-13" name="__codelineno-5-13" href="#__codelineno-5-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">3</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-5-14" name="__codelineno-5-14" href="#__codelineno-5-14"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">min</span><span class="p">(</span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">],</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">2</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="nx">i</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-5-15" name="__codelineno-5-15" href="#__codelineno-5-15"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-5-16" name="__codelineno-5-16" href="#__codelineno-5-16"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-5-17" name="__codelineno-5-17" href="#__codelineno-5-17"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
@ -3731,11 +3763,39 @@ dp[i] = \min(dp[i-1], dp[i-2]) + cost[i]
|
|||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.js</span><pre><span></span><code><a id="__codelineno-16-1" name="__codelineno-16-1" href="#__codelineno-16-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">minCostClimbingStairsDPComp</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.js</span><pre><span></span><code><a id="__codelineno-16-1" name="__codelineno-16-1" href="#__codelineno-16-1"></a><span class="cm">/* 爬楼梯最小代价:状态压缩后的动态规划 */</span>
|
||||||
|
<a id="__codelineno-16-2" name="__codelineno-16-2" href="#__codelineno-16-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">minCostClimbingStairsDPComp</span><span class="p">(</span><span class="nx">cost</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-16-3" name="__codelineno-16-3" href="#__codelineno-16-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">.</span><span class="nx">length</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-16-4" name="__codelineno-16-4" href="#__codelineno-16-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-16-5" name="__codelineno-16-5" href="#__codelineno-16-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="nx">n</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-16-6" name="__codelineno-16-6" href="#__codelineno-16-6"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-16-7" name="__codelineno-16-7" href="#__codelineno-16-7"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="mf">1</span><span class="p">],</span>
|
||||||
|
<a id="__codelineno-16-8" name="__codelineno-16-8" href="#__codelineno-16-8"></a><span class="w"> </span><span class="nx">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="mf">2</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-16-9" name="__codelineno-16-9" href="#__codelineno-16-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">3</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-16-10" name="__codelineno-16-10" href="#__codelineno-16-10"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">b</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-16-11" name="__codelineno-16-11" href="#__codelineno-16-11"></a><span class="w"> </span><span class="nx">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">min</span><span class="p">(</span><span class="nx">a</span><span class="p">,</span><span class="w"> </span><span class="nx">tmp</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="nx">i</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-16-12" name="__codelineno-16-12" href="#__codelineno-16-12"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">tmp</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-16-13" name="__codelineno-16-13" href="#__codelineno-16-13"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-16-14" name="__codelineno-16-14" href="#__codelineno-16-14"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">b</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-16-15" name="__codelineno-16-15" href="#__codelineno-16-15"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.ts</span><pre><span></span><code><a id="__codelineno-17-1" name="__codelineno-17-1" href="#__codelineno-17-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">minCostClimbingStairsDPComp</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.ts</span><pre><span></span><code><a id="__codelineno-17-1" name="__codelineno-17-1" href="#__codelineno-17-1"></a><span class="cm">/* 爬楼梯最小代价:状态压缩后的动态规划 */</span>
|
||||||
|
<a id="__codelineno-17-2" name="__codelineno-17-2" href="#__codelineno-17-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">minCostClimbingStairsDPComp</span><span class="p">(</span><span class="nx">cost</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o"><</span><span class="kt">number</span><span class="o">></span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-17-3" name="__codelineno-17-3" href="#__codelineno-17-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">.</span><span class="nx">length</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-17-4" name="__codelineno-17-4" href="#__codelineno-17-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-17-5" name="__codelineno-17-5" href="#__codelineno-17-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="nx">n</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-17-6" name="__codelineno-17-6" href="#__codelineno-17-6"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-17-7" name="__codelineno-17-7" href="#__codelineno-17-7"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="mf">1</span><span class="p">],</span>
|
||||||
|
<a id="__codelineno-17-8" name="__codelineno-17-8" href="#__codelineno-17-8"></a><span class="w"> </span><span class="nx">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="mf">2</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-17-9" name="__codelineno-17-9" href="#__codelineno-17-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">3</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-17-10" name="__codelineno-17-10" href="#__codelineno-17-10"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">b</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-17-11" name="__codelineno-17-11" href="#__codelineno-17-11"></a><span class="w"> </span><span class="nx">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">min</span><span class="p">(</span><span class="nx">a</span><span class="p">,</span><span class="w"> </span><span class="nx">tmp</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="nx">i</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-17-12" name="__codelineno-17-12" href="#__codelineno-17-12"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">tmp</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-17-13" name="__codelineno-17-13" href="#__codelineno-17-13"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-17-14" name="__codelineno-17-14" href="#__codelineno-17-14"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">b</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-17-15" name="__codelineno-17-15" href="#__codelineno-17-15"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
@ -3940,11 +4000,50 @@ dp[i, 2] = dp[i-2, 1] + dp[i-2, 2]
|
|||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">climbing_stairs_constraint_dp.js</span><pre><span></span><code><a id="__codelineno-28-1" name="__codelineno-28-1" href="#__codelineno-28-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">climbingStairsConstraintDP</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">climbing_stairs_constraint_dp.js</span><pre><span></span><code><a id="__codelineno-28-1" name="__codelineno-28-1" href="#__codelineno-28-1"></a><span class="cm">/* 带约束爬楼梯:动态规划 */</span>
|
||||||
|
<a id="__codelineno-28-2" name="__codelineno-28-2" href="#__codelineno-28-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">climbingStairsConstraintDP</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-28-3" name="__codelineno-28-3" href="#__codelineno-28-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-28-4" name="__codelineno-28-4" href="#__codelineno-28-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-28-5" name="__codelineno-28-5" href="#__codelineno-28-5"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-28-6" name="__codelineno-28-6" href="#__codelineno-28-6"></a><span class="w"> </span><span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
|
||||||
|
<a id="__codelineno-28-7" name="__codelineno-28-7" href="#__codelineno-28-7"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">(</span><span class="ow">new</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">),</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=></span><span class="w"> </span><span class="ow">new</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="mf">3</span><span class="p">));</span>
|
||||||
|
<a id="__codelineno-28-8" name="__codelineno-28-8" href="#__codelineno-28-8"></a><span class="w"> </span><span class="c1">// 初始状态:预设最小子问题的解</span>
|
||||||
|
<a id="__codelineno-28-9" name="__codelineno-28-9" href="#__codelineno-28-9"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">1</span><span class="p">][</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-28-10" name="__codelineno-28-10" href="#__codelineno-28-10"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">1</span><span class="p">][</span><span class="mf">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-28-11" name="__codelineno-28-11" href="#__codelineno-28-11"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">2</span><span class="p">][</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-28-12" name="__codelineno-28-12" href="#__codelineno-28-12"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">2</span><span class="p">][</span><span class="mf">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-28-13" name="__codelineno-28-13" href="#__codelineno-28-13"></a><span class="w"> </span><span class="c1">// 状态转移:从较小子问题逐步求解较大子问题</span>
|
||||||
|
<a id="__codelineno-28-14" name="__codelineno-28-14" href="#__codelineno-28-14"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">3</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-28-15" name="__codelineno-28-15" href="#__codelineno-28-15"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="mf">2</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-28-16" name="__codelineno-28-16" href="#__codelineno-28-16"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="mf">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">2</span><span class="p">][</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">2</span><span class="p">][</span><span class="mf">2</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-28-17" name="__codelineno-28-17" href="#__codelineno-28-17"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-28-18" name="__codelineno-28-18" href="#__codelineno-28-18"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">][</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">][</span><span class="mf">2</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-28-19" name="__codelineno-28-19" href="#__codelineno-28-19"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">climbing_stairs_constraint_dp.ts</span><pre><span></span><code><a id="__codelineno-29-1" name="__codelineno-29-1" href="#__codelineno-29-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">climbingStairsConstraintDP</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">climbing_stairs_constraint_dp.ts</span><pre><span></span><code><a id="__codelineno-29-1" name="__codelineno-29-1" href="#__codelineno-29-1"></a><span class="cm">/* 带约束爬楼梯:动态规划 */</span>
|
||||||
|
<a id="__codelineno-29-2" name="__codelineno-29-2" href="#__codelineno-29-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">climbingStairsConstraintDP</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-29-3" name="__codelineno-29-3" href="#__codelineno-29-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-29-4" name="__codelineno-29-4" href="#__codelineno-29-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-29-5" name="__codelineno-29-5" href="#__codelineno-29-5"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-29-6" name="__codelineno-29-6" href="#__codelineno-29-6"></a><span class="w"> </span><span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
|
||||||
|
<a id="__codelineno-29-7" name="__codelineno-29-7" href="#__codelineno-29-7"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">(</span>
|
||||||
|
<a id="__codelineno-29-8" name="__codelineno-29-8" href="#__codelineno-29-8"></a><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="kt">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="p">},</span>
|
||||||
|
<a id="__codelineno-29-9" name="__codelineno-29-9" href="#__codelineno-29-9"></a><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=></span><span class="w"> </span><span class="ow">new</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="mf">3</span><span class="p">)</span>
|
||||||
|
<a id="__codelineno-29-10" name="__codelineno-29-10" href="#__codelineno-29-10"></a><span class="w"> </span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-29-11" name="__codelineno-29-11" href="#__codelineno-29-11"></a><span class="w"> </span><span class="c1">// 初始状态:预设最小子问题的解</span>
|
||||||
|
<a id="__codelineno-29-12" name="__codelineno-29-12" href="#__codelineno-29-12"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">1</span><span class="p">][</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-29-13" name="__codelineno-29-13" href="#__codelineno-29-13"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">1</span><span class="p">][</span><span class="mf">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-29-14" name="__codelineno-29-14" href="#__codelineno-29-14"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">2</span><span class="p">][</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-29-15" name="__codelineno-29-15" href="#__codelineno-29-15"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">2</span><span class="p">][</span><span class="mf">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-29-16" name="__codelineno-29-16" href="#__codelineno-29-16"></a><span class="w"> </span><span class="c1">// 状态转移:从较小子问题逐步求解较大子问题</span>
|
||||||
|
<a id="__codelineno-29-17" name="__codelineno-29-17" href="#__codelineno-29-17"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">3</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-29-18" name="__codelineno-29-18" href="#__codelineno-29-18"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="mf">2</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-29-19" name="__codelineno-29-19" href="#__codelineno-29-19"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="mf">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">2</span><span class="p">][</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">2</span><span class="p">][</span><span class="mf">2</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-29-20" name="__codelineno-29-20" href="#__codelineno-29-20"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-29-21" name="__codelineno-29-21" href="#__codelineno-29-21"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">][</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">][</span><span class="mf">2</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-29-22" name="__codelineno-29-22" href="#__codelineno-29-22"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
|
@ -3671,11 +3671,45 @@ dp[i, j] = \min(dp[i-1, j], dp[i, j-1]) + grid[i, j]
|
|||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">min_path_sum.js</span><pre><span></span><code><a id="__codelineno-4-1" name="__codelineno-4-1" href="#__codelineno-4-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">minPathSumDFS</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">min_path_sum.js</span><pre><span></span><code><a id="__codelineno-4-1" name="__codelineno-4-1" href="#__codelineno-4-1"></a><span class="cm">/* 最小路径和:暴力搜索 */</span>
|
||||||
|
<a id="__codelineno-4-2" name="__codelineno-4-2" href="#__codelineno-4-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">minPathSumDFS</span><span class="p">(</span><span class="nx">grid</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="p">,</span><span class="w"> </span><span class="nx">j</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-4-3" name="__codelineno-4-3" href="#__codelineno-4-3"></a><span class="w"> </span><span class="c1">// 若为左上角单元格,则终止搜索</span>
|
||||||
|
<a id="__codelineno-4-4" name="__codelineno-4-4" href="#__codelineno-4-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">0</span><span class="w"> </span><span class="o">&&</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-4-5" name="__codelineno-4-5" href="#__codelineno-4-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">grid</span><span class="p">[</span><span class="mf">0</span><span class="p">][</span><span class="mf">0</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-4-6" name="__codelineno-4-6" href="#__codelineno-4-6"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-4-7" name="__codelineno-4-7" href="#__codelineno-4-7"></a><span class="w"> </span><span class="c1">// 若行列索引越界,则返回 +∞ 代价</span>
|
||||||
|
<a id="__codelineno-4-8" name="__codelineno-4-8" href="#__codelineno-4-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="mf">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="mf">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-4-9" name="__codelineno-4-9" href="#__codelineno-4-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="kc">Infinity</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-4-10" name="__codelineno-4-10" href="#__codelineno-4-10"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-4-11" name="__codelineno-4-11" href="#__codelineno-4-11"></a><span class="w"> </span><span class="c1">// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价</span>
|
||||||
|
<a id="__codelineno-4-12" name="__codelineno-4-12" href="#__codelineno-4-12"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">minPathSumDFS</span><span class="p">(</span><span class="nx">grid</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">j</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-4-13" name="__codelineno-4-13" href="#__codelineno-4-13"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">up</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">minPathSumDFS</span><span class="p">(</span><span class="nx">grid</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="p">,</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-4-14" name="__codelineno-4-14" href="#__codelineno-4-14"></a><span class="w"> </span><span class="c1">// 返回从左上角到 (i, j) 的最小路径代价</span>
|
||||||
|
<a id="__codelineno-4-15" name="__codelineno-4-15" href="#__codelineno-4-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">min</span><span class="p">(</span><span class="nx">left</span><span class="p">,</span><span class="w"> </span><span class="nx">up</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">grid</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">j</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-4-16" name="__codelineno-4-16" href="#__codelineno-4-16"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">min_path_sum.ts</span><pre><span></span><code><a id="__codelineno-5-1" name="__codelineno-5-1" href="#__codelineno-5-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">minPathSumDFS</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">min_path_sum.ts</span><pre><span></span><code><a id="__codelineno-5-1" name="__codelineno-5-1" href="#__codelineno-5-1"></a><span class="cm">/* 最小路径和:暴力搜索 */</span>
|
||||||
|
<a id="__codelineno-5-2" name="__codelineno-5-2" href="#__codelineno-5-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">minPathSumDFS</span><span class="p">(</span>
|
||||||
|
<a id="__codelineno-5-3" name="__codelineno-5-3" href="#__codelineno-5-3"></a><span class="w"> </span><span class="nx">grid</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o"><</span><span class="nb">Array</span><span class="o"><</span><span class="kt">number</span><span class="o">>></span><span class="p">,</span>
|
||||||
|
<a id="__codelineno-5-4" name="__codelineno-5-4" href="#__codelineno-5-4"></a><span class="w"> </span><span class="nx">i</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">,</span>
|
||||||
|
<a id="__codelineno-5-5" name="__codelineno-5-5" href="#__codelineno-5-5"></a><span class="w"> </span><span class="nx">j</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span>
|
||||||
|
<a id="__codelineno-5-6" name="__codelineno-5-6" href="#__codelineno-5-6"></a><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-5-7" name="__codelineno-5-7" href="#__codelineno-5-7"></a><span class="w"> </span><span class="c1">// 若为左上角单元格,则终止搜索</span>
|
||||||
|
<a id="__codelineno-5-8" name="__codelineno-5-8" href="#__codelineno-5-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">0</span><span class="w"> </span><span class="o">&&</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mf">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-5-9" name="__codelineno-5-9" href="#__codelineno-5-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">grid</span><span class="p">[</span><span class="mf">0</span><span class="p">][</span><span class="mf">0</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-5-10" name="__codelineno-5-10" href="#__codelineno-5-10"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-5-11" name="__codelineno-5-11" href="#__codelineno-5-11"></a><span class="w"> </span><span class="c1">// 若行列索引越界,则返回 +∞ 代价</span>
|
||||||
|
<a id="__codelineno-5-12" name="__codelineno-5-12" href="#__codelineno-5-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="mf">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="mf">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-5-13" name="__codelineno-5-13" href="#__codelineno-5-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="kc">Infinity</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-5-14" name="__codelineno-5-14" href="#__codelineno-5-14"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-5-15" name="__codelineno-5-15" href="#__codelineno-5-15"></a><span class="w"> </span><span class="c1">// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价</span>
|
||||||
|
<a id="__codelineno-5-16" name="__codelineno-5-16" href="#__codelineno-5-16"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">minPathSumDFS</span><span class="p">(</span><span class="nx">grid</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">j</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-5-17" name="__codelineno-5-17" href="#__codelineno-5-17"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">up</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">minPathSumDFS</span><span class="p">(</span><span class="nx">grid</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="p">,</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-5-18" name="__codelineno-5-18" href="#__codelineno-5-18"></a><span class="w"> </span><span class="c1">// 返回从左上角到 (i, j) 的最小路径代价</span>
|
||||||
|
<a id="__codelineno-5-19" name="__codelineno-5-19" href="#__codelineno-5-19"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">min</span><span class="p">(</span><span class="nx">left</span><span class="p">,</span><span class="w"> </span><span class="nx">up</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">grid</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">j</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-5-20" name="__codelineno-5-20" href="#__codelineno-5-20"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
@ -3885,11 +3919,56 @@ dp[i, j] = \min(dp[i-1, j], dp[i, j-1]) + grid[i, j]
|
|||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">min_path_sum.js</span><pre><span></span><code><a id="__codelineno-16-1" name="__codelineno-16-1" href="#__codelineno-16-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">minPathSumDFSMem</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">min_path_sum.js</span><pre><span></span><code><a id="__codelineno-16-1" name="__codelineno-16-1" href="#__codelineno-16-1"></a><span class="cm">/* 最小路径和:记忆化搜索 */</span>
|
||||||
|
<a id="__codelineno-16-2" name="__codelineno-16-2" href="#__codelineno-16-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">minPathSumDFSMem</span><span class="p">(</span><span class="nx">grid</span><span class="p">,</span><span class="w"> </span><span class="nx">mem</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="p">,</span><span class="w"> </span><span class="nx">j</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-16-3" name="__codelineno-16-3" href="#__codelineno-16-3"></a><span class="w"> </span><span class="c1">// 若为左上角单元格,则终止搜索</span>
|
||||||
|
<a id="__codelineno-16-4" name="__codelineno-16-4" href="#__codelineno-16-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">0</span><span class="w"> </span><span class="o">&&</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-16-5" name="__codelineno-16-5" href="#__codelineno-16-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">grid</span><span class="p">[</span><span class="mf">0</span><span class="p">][</span><span class="mf">0</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-16-6" name="__codelineno-16-6" href="#__codelineno-16-6"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-16-7" name="__codelineno-16-7" href="#__codelineno-16-7"></a><span class="w"> </span><span class="c1">// 若行列索引越界,则返回 +∞ 代价</span>
|
||||||
|
<a id="__codelineno-16-8" name="__codelineno-16-8" href="#__codelineno-16-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="mf">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="mf">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-16-9" name="__codelineno-16-9" href="#__codelineno-16-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="kc">Infinity</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-16-10" name="__codelineno-16-10" href="#__codelineno-16-10"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-16-11" name="__codelineno-16-11" href="#__codelineno-16-11"></a><span class="w"> </span><span class="c1">// 若已有记录,则直接返回</span>
|
||||||
|
<a id="__codelineno-16-12" name="__codelineno-16-12" href="#__codelineno-16-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">mem</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">!==</span><span class="w"> </span><span class="o">-</span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-16-13" name="__codelineno-16-13" href="#__codelineno-16-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">mem</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">j</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-16-14" name="__codelineno-16-14" href="#__codelineno-16-14"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-16-15" name="__codelineno-16-15" href="#__codelineno-16-15"></a><span class="w"> </span><span class="c1">// 左边和上边单元格的最小路径代价</span>
|
||||||
|
<a id="__codelineno-16-16" name="__codelineno-16-16" href="#__codelineno-16-16"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">minPathSumDFSMem</span><span class="p">(</span><span class="nx">grid</span><span class="p">,</span><span class="w"> </span><span class="nx">mem</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">j</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-16-17" name="__codelineno-16-17" href="#__codelineno-16-17"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">up</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">minPathSumDFSMem</span><span class="p">(</span><span class="nx">grid</span><span class="p">,</span><span class="w"> </span><span class="nx">mem</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="p">,</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-16-18" name="__codelineno-16-18" href="#__codelineno-16-18"></a><span class="w"> </span><span class="c1">// 记录并返回左上角到 (i, j) 的最小路径代价</span>
|
||||||
|
<a id="__codelineno-16-19" name="__codelineno-16-19" href="#__codelineno-16-19"></a><span class="w"> </span><span class="nx">mem</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">min</span><span class="p">(</span><span class="nx">left</span><span class="p">,</span><span class="w"> </span><span class="nx">up</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">grid</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">j</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-16-20" name="__codelineno-16-20" href="#__codelineno-16-20"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">mem</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">j</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-16-21" name="__codelineno-16-21" href="#__codelineno-16-21"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">min_path_sum.ts</span><pre><span></span><code><a id="__codelineno-17-1" name="__codelineno-17-1" href="#__codelineno-17-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">minPathSumDFSMem</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">min_path_sum.ts</span><pre><span></span><code><a id="__codelineno-17-1" name="__codelineno-17-1" href="#__codelineno-17-1"></a><span class="cm">/* 最小路径和:记忆化搜索 */</span>
|
||||||
|
<a id="__codelineno-17-2" name="__codelineno-17-2" href="#__codelineno-17-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">minPathSumDFSMem</span><span class="p">(</span>
|
||||||
|
<a id="__codelineno-17-3" name="__codelineno-17-3" href="#__codelineno-17-3"></a><span class="w"> </span><span class="nx">grid</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o"><</span><span class="nb">Array</span><span class="o"><</span><span class="kt">number</span><span class="o">>></span><span class="p">,</span>
|
||||||
|
<a id="__codelineno-17-4" name="__codelineno-17-4" href="#__codelineno-17-4"></a><span class="w"> </span><span class="nx">mem</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o"><</span><span class="nb">Array</span><span class="o"><</span><span class="kt">number</span><span class="o">>></span><span class="p">,</span>
|
||||||
|
<a id="__codelineno-17-5" name="__codelineno-17-5" href="#__codelineno-17-5"></a><span class="w"> </span><span class="nx">i</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">,</span>
|
||||||
|
<a id="__codelineno-17-6" name="__codelineno-17-6" href="#__codelineno-17-6"></a><span class="w"> </span><span class="nx">j</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span>
|
||||||
|
<a id="__codelineno-17-7" name="__codelineno-17-7" href="#__codelineno-17-7"></a><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-17-8" name="__codelineno-17-8" href="#__codelineno-17-8"></a><span class="w"> </span><span class="c1">// 若为左上角单元格,则终止搜索</span>
|
||||||
|
<a id="__codelineno-17-9" name="__codelineno-17-9" href="#__codelineno-17-9"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">0</span><span class="w"> </span><span class="o">&&</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-17-10" name="__codelineno-17-10" href="#__codelineno-17-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">grid</span><span class="p">[</span><span class="mf">0</span><span class="p">][</span><span class="mf">0</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-17-11" name="__codelineno-17-11" href="#__codelineno-17-11"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-17-12" name="__codelineno-17-12" href="#__codelineno-17-12"></a><span class="w"> </span><span class="c1">// 若行列索引越界,则返回 +∞ 代价</span>
|
||||||
|
<a id="__codelineno-17-13" name="__codelineno-17-13" href="#__codelineno-17-13"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="mf">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="mf">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-17-14" name="__codelineno-17-14" href="#__codelineno-17-14"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="kc">Infinity</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-17-15" name="__codelineno-17-15" href="#__codelineno-17-15"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-17-16" name="__codelineno-17-16" href="#__codelineno-17-16"></a><span class="w"> </span><span class="c1">// 若已有记录,则直接返回</span>
|
||||||
|
<a id="__codelineno-17-17" name="__codelineno-17-17" href="#__codelineno-17-17"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">mem</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="o">-</span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-17-18" name="__codelineno-17-18" href="#__codelineno-17-18"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">mem</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">j</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-17-19" name="__codelineno-17-19" href="#__codelineno-17-19"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-17-20" name="__codelineno-17-20" href="#__codelineno-17-20"></a><span class="w"> </span><span class="c1">// 左边和上边单元格的最小路径代价</span>
|
||||||
|
<a id="__codelineno-17-21" name="__codelineno-17-21" href="#__codelineno-17-21"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">left</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">minPathSumDFSMem</span><span class="p">(</span><span class="nx">grid</span><span class="p">,</span><span class="w"> </span><span class="nx">mem</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">j</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-17-22" name="__codelineno-17-22" href="#__codelineno-17-22"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">up</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">minPathSumDFSMem</span><span class="p">(</span><span class="nx">grid</span><span class="p">,</span><span class="w"> </span><span class="nx">mem</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="p">,</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-17-23" name="__codelineno-17-23" href="#__codelineno-17-23"></a><span class="w"> </span><span class="c1">// 记录并返回左上角到 (i, j) 的最小路径代价</span>
|
||||||
|
<a id="__codelineno-17-24" name="__codelineno-17-24" href="#__codelineno-17-24"></a><span class="w"> </span><span class="nx">mem</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">min</span><span class="p">(</span><span class="nx">left</span><span class="p">,</span><span class="w"> </span><span class="nx">up</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">grid</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">j</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-17-25" name="__codelineno-17-25" href="#__codelineno-17-25"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">mem</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">j</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-17-26" name="__codelineno-17-26" href="#__codelineno-17-26"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
@ -4127,11 +4206,59 @@ dp[i, j] = \min(dp[i-1, j], dp[i, j-1]) + grid[i, j]
|
|||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">min_path_sum.js</span><pre><span></span><code><a id="__codelineno-28-1" name="__codelineno-28-1" href="#__codelineno-28-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">minPathSumDP</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">min_path_sum.js</span><pre><span></span><code><a id="__codelineno-28-1" name="__codelineno-28-1" href="#__codelineno-28-1"></a><span class="cm">/* 最小路径和:动态规划 */</span>
|
||||||
|
<a id="__codelineno-28-2" name="__codelineno-28-2" href="#__codelineno-28-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">minPathSumDP</span><span class="p">(</span><span class="nx">grid</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-28-3" name="__codelineno-28-3" href="#__codelineno-28-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">grid</span><span class="p">.</span><span class="nx">length</span><span class="p">,</span>
|
||||||
|
<a id="__codelineno-28-4" name="__codelineno-28-4" href="#__codelineno-28-4"></a><span class="w"> </span><span class="nx">m</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">grid</span><span class="p">[</span><span class="mf">0</span><span class="p">].</span><span class="nx">length</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-28-5" name="__codelineno-28-5" href="#__codelineno-28-5"></a><span class="w"> </span><span class="c1">// 初始化 dp 表</span>
|
||||||
|
<a id="__codelineno-28-6" name="__codelineno-28-6" href="#__codelineno-28-6"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=></span>
|
||||||
|
<a id="__codelineno-28-7" name="__codelineno-28-7" href="#__codelineno-28-7"></a><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="nx">m</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=></span><span class="w"> </span><span class="mf">0</span><span class="p">)</span>
|
||||||
|
<a id="__codelineno-28-8" name="__codelineno-28-8" href="#__codelineno-28-8"></a><span class="w"> </span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-28-9" name="__codelineno-28-9" href="#__codelineno-28-9"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">0</span><span class="p">][</span><span class="mf">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">grid</span><span class="p">[</span><span class="mf">0</span><span class="p">][</span><span class="mf">0</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-28-10" name="__codelineno-28-10" href="#__codelineno-28-10"></a><span class="w"> </span><span class="c1">// 状态转移:首行</span>
|
||||||
|
<a id="__codelineno-28-11" name="__codelineno-28-11" href="#__codelineno-28-11"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">m</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-28-12" name="__codelineno-28-12" href="#__codelineno-28-12"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">0</span><span class="p">][</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">0</span><span class="p">][</span><span class="nx">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">grid</span><span class="p">[</span><span class="mf">0</span><span class="p">][</span><span class="nx">j</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-28-13" name="__codelineno-28-13" href="#__codelineno-28-13"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-28-14" name="__codelineno-28-14" href="#__codelineno-28-14"></a><span class="w"> </span><span class="c1">// 状态转移:首列</span>
|
||||||
|
<a id="__codelineno-28-15" name="__codelineno-28-15" href="#__codelineno-28-15"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-28-16" name="__codelineno-28-16" href="#__codelineno-28-16"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="mf">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="mf">0</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">grid</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="mf">0</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-28-17" name="__codelineno-28-17" href="#__codelineno-28-17"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-28-18" name="__codelineno-28-18" href="#__codelineno-28-18"></a><span class="w"> </span><span class="c1">// 状态转移:其余行列</span>
|
||||||
|
<a id="__codelineno-28-19" name="__codelineno-28-19" href="#__codelineno-28-19"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-28-20" name="__codelineno-28-20" href="#__codelineno-28-20"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">m</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-28-21" name="__codelineno-28-21" href="#__codelineno-28-21"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">min</span><span class="p">(</span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">],</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="nx">j</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">grid</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">j</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-28-22" name="__codelineno-28-22" href="#__codelineno-28-22"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-28-23" name="__codelineno-28-23" href="#__codelineno-28-23"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-28-24" name="__codelineno-28-24" href="#__codelineno-28-24"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="nx">m</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-28-25" name="__codelineno-28-25" href="#__codelineno-28-25"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">min_path_sum.ts</span><pre><span></span><code><a id="__codelineno-29-1" name="__codelineno-29-1" href="#__codelineno-29-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">minPathSumDP</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">min_path_sum.ts</span><pre><span></span><code><a id="__codelineno-29-1" name="__codelineno-29-1" href="#__codelineno-29-1"></a><span class="cm">/* 最小路径和:动态规划 */</span>
|
||||||
|
<a id="__codelineno-29-2" name="__codelineno-29-2" href="#__codelineno-29-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">minPathSumDP</span><span class="p">(</span><span class="nx">grid</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o"><</span><span class="nb">Array</span><span class="o"><</span><span class="kt">number</span><span class="o">>></span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-29-3" name="__codelineno-29-3" href="#__codelineno-29-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">grid</span><span class="p">.</span><span class="nx">length</span><span class="p">,</span>
|
||||||
|
<a id="__codelineno-29-4" name="__codelineno-29-4" href="#__codelineno-29-4"></a><span class="w"> </span><span class="nx">m</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">grid</span><span class="p">[</span><span class="mf">0</span><span class="p">].</span><span class="nx">length</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-29-5" name="__codelineno-29-5" href="#__codelineno-29-5"></a><span class="w"> </span><span class="c1">// 初始化 dp 表</span>
|
||||||
|
<a id="__codelineno-29-6" name="__codelineno-29-6" href="#__codelineno-29-6"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="kt">n</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=></span>
|
||||||
|
<a id="__codelineno-29-7" name="__codelineno-29-7" href="#__codelineno-29-7"></a><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="kt">m</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=></span><span class="w"> </span><span class="mf">0</span><span class="p">)</span>
|
||||||
|
<a id="__codelineno-29-8" name="__codelineno-29-8" href="#__codelineno-29-8"></a><span class="w"> </span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-29-9" name="__codelineno-29-9" href="#__codelineno-29-9"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">0</span><span class="p">][</span><span class="mf">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">grid</span><span class="p">[</span><span class="mf">0</span><span class="p">][</span><span class="mf">0</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-29-10" name="__codelineno-29-10" href="#__codelineno-29-10"></a><span class="w"> </span><span class="c1">// 状态转移:首行</span>
|
||||||
|
<a id="__codelineno-29-11" name="__codelineno-29-11" href="#__codelineno-29-11"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">m</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-29-12" name="__codelineno-29-12" href="#__codelineno-29-12"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">0</span><span class="p">][</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">0</span><span class="p">][</span><span class="nx">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">grid</span><span class="p">[</span><span class="mf">0</span><span class="p">][</span><span class="nx">j</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-29-13" name="__codelineno-29-13" href="#__codelineno-29-13"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-29-14" name="__codelineno-29-14" href="#__codelineno-29-14"></a><span class="w"> </span><span class="c1">// 状态转移:首列</span>
|
||||||
|
<a id="__codelineno-29-15" name="__codelineno-29-15" href="#__codelineno-29-15"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-29-16" name="__codelineno-29-16" href="#__codelineno-29-16"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="mf">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="mf">0</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">grid</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="mf">0</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-29-17" name="__codelineno-29-17" href="#__codelineno-29-17"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-29-18" name="__codelineno-29-18" href="#__codelineno-29-18"></a><span class="w"> </span><span class="c1">// 状态转移:其余行列</span>
|
||||||
|
<a id="__codelineno-29-19" name="__codelineno-29-19" href="#__codelineno-29-19"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-29-20" name="__codelineno-29-20" href="#__codelineno-29-20"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">m</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-29-21" name="__codelineno-29-21" href="#__codelineno-29-21"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">min</span><span class="p">(</span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">],</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="nx">j</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">grid</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">j</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-29-22" name="__codelineno-29-22" href="#__codelineno-29-22"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-29-23" name="__codelineno-29-23" href="#__codelineno-29-23"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-29-24" name="__codelineno-29-24" href="#__codelineno-29-24"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="nx">m</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-29-25" name="__codelineno-29-25" href="#__codelineno-29-25"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
@ -4409,11 +4536,53 @@ dp[i, j] = \min(dp[i-1, j], dp[i, j-1]) + grid[i, j]
|
|||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">min_path_sum.js</span><pre><span></span><code><a id="__codelineno-40-1" name="__codelineno-40-1" href="#__codelineno-40-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">minPathSumDPComp</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">min_path_sum.js</span><pre><span></span><code><a id="__codelineno-40-1" name="__codelineno-40-1" href="#__codelineno-40-1"></a><span class="cm">/* 最小路径和:状态压缩后的动态规划 */</span>
|
||||||
|
<a id="__codelineno-40-2" name="__codelineno-40-2" href="#__codelineno-40-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">minPathSumDPComp</span><span class="p">(</span><span class="nx">grid</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-40-3" name="__codelineno-40-3" href="#__codelineno-40-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">grid</span><span class="p">.</span><span class="nx">length</span><span class="p">,</span>
|
||||||
|
<a id="__codelineno-40-4" name="__codelineno-40-4" href="#__codelineno-40-4"></a><span class="w"> </span><span class="nx">m</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">grid</span><span class="p">[</span><span class="mf">0</span><span class="p">].</span><span class="nx">length</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-40-5" name="__codelineno-40-5" href="#__codelineno-40-5"></a><span class="w"> </span><span class="c1">// 初始化 dp 表</span>
|
||||||
|
<a id="__codelineno-40-6" name="__codelineno-40-6" href="#__codelineno-40-6"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="ow">new</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">m</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-40-7" name="__codelineno-40-7" href="#__codelineno-40-7"></a><span class="w"> </span><span class="c1">// 状态转移:首行</span>
|
||||||
|
<a id="__codelineno-40-8" name="__codelineno-40-8" href="#__codelineno-40-8"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">grid</span><span class="p">[</span><span class="mf">0</span><span class="p">][</span><span class="mf">0</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-40-9" name="__codelineno-40-9" href="#__codelineno-40-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">m</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-40-10" name="__codelineno-40-10" href="#__codelineno-40-10"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">grid</span><span class="p">[</span><span class="mf">0</span><span class="p">][</span><span class="nx">j</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-40-11" name="__codelineno-40-11" href="#__codelineno-40-11"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-40-12" name="__codelineno-40-12" href="#__codelineno-40-12"></a><span class="w"> </span><span class="c1">// 状态转移:其余行</span>
|
||||||
|
<a id="__codelineno-40-13" name="__codelineno-40-13" href="#__codelineno-40-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-40-14" name="__codelineno-40-14" href="#__codelineno-40-14"></a><span class="w"> </span><span class="c1">// 状态转移:首列</span>
|
||||||
|
<a id="__codelineno-40-15" name="__codelineno-40-15" href="#__codelineno-40-15"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">0</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">grid</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="mf">0</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-40-16" name="__codelineno-40-16" href="#__codelineno-40-16"></a><span class="w"> </span><span class="c1">// 状态转移:其余列</span>
|
||||||
|
<a id="__codelineno-40-17" name="__codelineno-40-17" href="#__codelineno-40-17"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">m</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-40-18" name="__codelineno-40-18" href="#__codelineno-40-18"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">min</span><span class="p">(</span><span class="nx">dp</span><span class="p">[</span><span class="nx">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">],</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">j</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">grid</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">j</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-40-19" name="__codelineno-40-19" href="#__codelineno-40-19"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-40-20" name="__codelineno-40-20" href="#__codelineno-40-20"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-40-21" name="__codelineno-40-21" href="#__codelineno-40-21"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">m</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-40-22" name="__codelineno-40-22" href="#__codelineno-40-22"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">min_path_sum.ts</span><pre><span></span><code><a id="__codelineno-41-1" name="__codelineno-41-1" href="#__codelineno-41-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">minPathSumDPComp</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">min_path_sum.ts</span><pre><span></span><code><a id="__codelineno-41-1" name="__codelineno-41-1" href="#__codelineno-41-1"></a><span class="cm">/* 最小路径和:状态压缩后的动态规划 */</span>
|
||||||
|
<a id="__codelineno-41-2" name="__codelineno-41-2" href="#__codelineno-41-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">minPathSumDPComp</span><span class="p">(</span><span class="nx">grid</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o"><</span><span class="nb">Array</span><span class="o"><</span><span class="kt">number</span><span class="o">>></span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-41-3" name="__codelineno-41-3" href="#__codelineno-41-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">grid</span><span class="p">.</span><span class="nx">length</span><span class="p">,</span>
|
||||||
|
<a id="__codelineno-41-4" name="__codelineno-41-4" href="#__codelineno-41-4"></a><span class="w"> </span><span class="nx">m</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">grid</span><span class="p">[</span><span class="mf">0</span><span class="p">].</span><span class="nx">length</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-41-5" name="__codelineno-41-5" href="#__codelineno-41-5"></a><span class="w"> </span><span class="c1">// 初始化 dp 表</span>
|
||||||
|
<a id="__codelineno-41-6" name="__codelineno-41-6" href="#__codelineno-41-6"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="ow">new</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">m</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-41-7" name="__codelineno-41-7" href="#__codelineno-41-7"></a><span class="w"> </span><span class="c1">// 状态转移:首行</span>
|
||||||
|
<a id="__codelineno-41-8" name="__codelineno-41-8" href="#__codelineno-41-8"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">grid</span><span class="p">[</span><span class="mf">0</span><span class="p">][</span><span class="mf">0</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-41-9" name="__codelineno-41-9" href="#__codelineno-41-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">m</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-41-10" name="__codelineno-41-10" href="#__codelineno-41-10"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">grid</span><span class="p">[</span><span class="mf">0</span><span class="p">][</span><span class="nx">j</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-41-11" name="__codelineno-41-11" href="#__codelineno-41-11"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-41-12" name="__codelineno-41-12" href="#__codelineno-41-12"></a><span class="w"> </span><span class="c1">// 状态转移:其余行</span>
|
||||||
|
<a id="__codelineno-41-13" name="__codelineno-41-13" href="#__codelineno-41-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-41-14" name="__codelineno-41-14" href="#__codelineno-41-14"></a><span class="w"> </span><span class="c1">// 状态转移:首列</span>
|
||||||
|
<a id="__codelineno-41-15" name="__codelineno-41-15" href="#__codelineno-41-15"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">0</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">grid</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="mf">0</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-41-16" name="__codelineno-41-16" href="#__codelineno-41-16"></a><span class="w"> </span><span class="c1">// 状态转移:其余列</span>
|
||||||
|
<a id="__codelineno-41-17" name="__codelineno-41-17" href="#__codelineno-41-17"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o"><</span><span class="w"> </span><span class="nx">m</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-41-18" name="__codelineno-41-18" href="#__codelineno-41-18"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">min</span><span class="p">(</span><span class="nx">dp</span><span class="p">[</span><span class="nx">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">],</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">j</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">grid</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">j</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-41-19" name="__codelineno-41-19" href="#__codelineno-41-19"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-41-20" name="__codelineno-41-20" href="#__codelineno-41-20"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-41-21" name="__codelineno-41-21" href="#__codelineno-41-21"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">m</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-41-22" name="__codelineno-41-22" href="#__codelineno-41-22"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
|
@ -3626,11 +3626,71 @@ dp[i, j] = dp[i-1, j-1]
|
|||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">edit_distance.js</span><pre><span></span><code><a id="__codelineno-4-1" name="__codelineno-4-1" href="#__codelineno-4-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">editDistanceDP</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">edit_distance.js</span><pre><span></span><code><a id="__codelineno-4-1" name="__codelineno-4-1" href="#__codelineno-4-1"></a><span class="cm">/* 编辑距离:动态规划 */</span>
|
||||||
|
<a id="__codelineno-4-2" name="__codelineno-4-2" href="#__codelineno-4-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">editDistanceDP</span><span class="p">(</span><span class="nx">s</span><span class="p">,</span><span class="w"> </span><span class="nx">t</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-4-3" name="__codelineno-4-3" href="#__codelineno-4-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">s</span><span class="p">.</span><span class="nx">length</span><span class="p">,</span>
|
||||||
|
<a id="__codelineno-4-4" name="__codelineno-4-4" href="#__codelineno-4-4"></a><span class="w"> </span><span class="nx">m</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">t</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-4-5" name="__codelineno-4-5" href="#__codelineno-4-5"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=></span><span class="w"> </span><span class="ow">new</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">m</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="mf">0</span><span class="p">));</span>
|
||||||
|
<a id="__codelineno-4-6" name="__codelineno-4-6" href="#__codelineno-4-6"></a><span class="w"> </span><span class="c1">// 状态转移:首行首列</span>
|
||||||
|
<a id="__codelineno-4-7" name="__codelineno-4-7" href="#__codelineno-4-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-4-8" name="__codelineno-4-8" href="#__codelineno-4-8"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="mf">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">i</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-4-9" name="__codelineno-4-9" href="#__codelineno-4-9"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-4-10" name="__codelineno-4-10" href="#__codelineno-4-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">m</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-4-11" name="__codelineno-4-11" href="#__codelineno-4-11"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">0</span><span class="p">][</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">j</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-4-12" name="__codelineno-4-12" href="#__codelineno-4-12"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-4-13" name="__codelineno-4-13" href="#__codelineno-4-13"></a><span class="w"> </span><span class="c1">// 状态转移:其余行列</span>
|
||||||
|
<a id="__codelineno-4-14" name="__codelineno-4-14" href="#__codelineno-4-14"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-4-15" name="__codelineno-4-15" href="#__codelineno-4-15"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">m</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-4-16" name="__codelineno-4-16" href="#__codelineno-4-16"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">s</span><span class="p">.</span><span class="nx">charAt</span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="nx">t</span><span class="p">.</span><span class="nx">charAt</span><span class="p">(</span><span class="nx">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">))</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-4-17" name="__codelineno-4-17" href="#__codelineno-4-17"></a><span class="w"> </span><span class="c1">// 若两字符相等,则直接跳过此两字符</span>
|
||||||
|
<a id="__codelineno-4-18" name="__codelineno-4-18" href="#__codelineno-4-18"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="nx">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-4-19" name="__codelineno-4-19" href="#__codelineno-4-19"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-4-20" name="__codelineno-4-20" href="#__codelineno-4-20"></a><span class="w"> </span><span class="c1">// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1</span>
|
||||||
|
<a id="__codelineno-4-21" name="__codelineno-4-21" href="#__codelineno-4-21"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span>
|
||||||
|
<a id="__codelineno-4-22" name="__codelineno-4-22" href="#__codelineno-4-22"></a><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">min</span><span class="p">(</span>
|
||||||
|
<a id="__codelineno-4-23" name="__codelineno-4-23" href="#__codelineno-4-23"></a><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">min</span><span class="p">(</span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">],</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="nx">j</span><span class="p">]),</span>
|
||||||
|
<a id="__codelineno-4-24" name="__codelineno-4-24" href="#__codelineno-4-24"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="nx">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span>
|
||||||
|
<a id="__codelineno-4-25" name="__codelineno-4-25" href="#__codelineno-4-25"></a><span class="w"> </span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-4-26" name="__codelineno-4-26" href="#__codelineno-4-26"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-4-27" name="__codelineno-4-27" href="#__codelineno-4-27"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-4-28" name="__codelineno-4-28" href="#__codelineno-4-28"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-4-29" name="__codelineno-4-29" href="#__codelineno-4-29"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">][</span><span class="nx">m</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-4-30" name="__codelineno-4-30" href="#__codelineno-4-30"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">edit_distance.ts</span><pre><span></span><code><a id="__codelineno-5-1" name="__codelineno-5-1" href="#__codelineno-5-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">editDistanceDP</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">edit_distance.ts</span><pre><span></span><code><a id="__codelineno-5-1" name="__codelineno-5-1" href="#__codelineno-5-1"></a><span class="cm">/* 编辑距离:动态规划 */</span>
|
||||||
|
<a id="__codelineno-5-2" name="__codelineno-5-2" href="#__codelineno-5-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">editDistanceDP</span><span class="p">(</span><span class="nx">s</span><span class="o">:</span><span class="w"> </span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nx">t</span><span class="o">:</span><span class="w"> </span><span class="kt">string</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-5-3" name="__codelineno-5-3" href="#__codelineno-5-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">s</span><span class="p">.</span><span class="nx">length</span><span class="p">,</span>
|
||||||
|
<a id="__codelineno-5-4" name="__codelineno-5-4" href="#__codelineno-5-4"></a><span class="w"> </span><span class="nx">m</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">t</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-5-5" name="__codelineno-5-5" href="#__codelineno-5-5"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="kt">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=></span>
|
||||||
|
<a id="__codelineno-5-6" name="__codelineno-5-6" href="#__codelineno-5-6"></a><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="kt">m</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=></span><span class="w"> </span><span class="mf">0</span><span class="p">)</span>
|
||||||
|
<a id="__codelineno-5-7" name="__codelineno-5-7" href="#__codelineno-5-7"></a><span class="w"> </span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-5-8" name="__codelineno-5-8" href="#__codelineno-5-8"></a><span class="w"> </span><span class="c1">// 状态转移:首行首列</span>
|
||||||
|
<a id="__codelineno-5-9" name="__codelineno-5-9" href="#__codelineno-5-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-5-10" name="__codelineno-5-10" href="#__codelineno-5-10"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="mf">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">i</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-5-11" name="__codelineno-5-11" href="#__codelineno-5-11"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-5-12" name="__codelineno-5-12" href="#__codelineno-5-12"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">m</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-5-13" name="__codelineno-5-13" href="#__codelineno-5-13"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">0</span><span class="p">][</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">j</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-5-14" name="__codelineno-5-14" href="#__codelineno-5-14"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-5-15" name="__codelineno-5-15" href="#__codelineno-5-15"></a><span class="w"> </span><span class="c1">// 状态转移:其余行列</span>
|
||||||
|
<a id="__codelineno-5-16" name="__codelineno-5-16" href="#__codelineno-5-16"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-5-17" name="__codelineno-5-17" href="#__codelineno-5-17"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">m</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-5-18" name="__codelineno-5-18" href="#__codelineno-5-18"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">s</span><span class="p">.</span><span class="nx">charAt</span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="nx">t</span><span class="p">.</span><span class="nx">charAt</span><span class="p">(</span><span class="nx">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">))</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-5-19" name="__codelineno-5-19" href="#__codelineno-5-19"></a><span class="w"> </span><span class="c1">// 若两字符相等,则直接跳过此两字符</span>
|
||||||
|
<a id="__codelineno-5-20" name="__codelineno-5-20" href="#__codelineno-5-20"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="nx">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-5-21" name="__codelineno-5-21" href="#__codelineno-5-21"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-5-22" name="__codelineno-5-22" href="#__codelineno-5-22"></a><span class="w"> </span><span class="c1">// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1</span>
|
||||||
|
<a id="__codelineno-5-23" name="__codelineno-5-23" href="#__codelineno-5-23"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span>
|
||||||
|
<a id="__codelineno-5-24" name="__codelineno-5-24" href="#__codelineno-5-24"></a><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">min</span><span class="p">(</span>
|
||||||
|
<a id="__codelineno-5-25" name="__codelineno-5-25" href="#__codelineno-5-25"></a><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">min</span><span class="p">(</span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">],</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="nx">j</span><span class="p">]),</span>
|
||||||
|
<a id="__codelineno-5-26" name="__codelineno-5-26" href="#__codelineno-5-26"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="nx">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span>
|
||||||
|
<a id="__codelineno-5-27" name="__codelineno-5-27" href="#__codelineno-5-27"></a><span class="w"> </span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-5-28" name="__codelineno-5-28" href="#__codelineno-5-28"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-5-29" name="__codelineno-5-29" href="#__codelineno-5-29"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-5-30" name="__codelineno-5-30" href="#__codelineno-5-30"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-5-31" name="__codelineno-5-31" href="#__codelineno-5-31"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">][</span><span class="nx">m</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-5-32" name="__codelineno-5-32" href="#__codelineno-5-32"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
@ -3959,11 +4019,67 @@ dp[i, j] = dp[i-1, j-1]
|
|||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">edit_distance.js</span><pre><span></span><code><a id="__codelineno-16-1" name="__codelineno-16-1" href="#__codelineno-16-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">editDistanceDPComp</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">edit_distance.js</span><pre><span></span><code><a id="__codelineno-16-1" name="__codelineno-16-1" href="#__codelineno-16-1"></a><span class="cm">/* 编辑距离:状态压缩后的动态规划 */</span>
|
||||||
|
<a id="__codelineno-16-2" name="__codelineno-16-2" href="#__codelineno-16-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">editDistanceDPComp</span><span class="p">(</span><span class="nx">s</span><span class="p">,</span><span class="w"> </span><span class="nx">t</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-16-3" name="__codelineno-16-3" href="#__codelineno-16-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">s</span><span class="p">.</span><span class="nx">length</span><span class="p">,</span>
|
||||||
|
<a id="__codelineno-16-4" name="__codelineno-16-4" href="#__codelineno-16-4"></a><span class="w"> </span><span class="nx">m</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">t</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-16-5" name="__codelineno-16-5" href="#__codelineno-16-5"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="ow">new</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">m</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-16-6" name="__codelineno-16-6" href="#__codelineno-16-6"></a><span class="w"> </span><span class="c1">// 状态转移:首行</span>
|
||||||
|
<a id="__codelineno-16-7" name="__codelineno-16-7" href="#__codelineno-16-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">m</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-16-8" name="__codelineno-16-8" href="#__codelineno-16-8"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">j</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-16-9" name="__codelineno-16-9" href="#__codelineno-16-9"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-16-10" name="__codelineno-16-10" href="#__codelineno-16-10"></a><span class="w"> </span><span class="c1">// 状态转移:其余行</span>
|
||||||
|
<a id="__codelineno-16-11" name="__codelineno-16-11" href="#__codelineno-16-11"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-16-12" name="__codelineno-16-12" href="#__codelineno-16-12"></a><span class="w"> </span><span class="c1">// 状态转移:首列</span>
|
||||||
|
<a id="__codelineno-16-13" name="__codelineno-16-13" href="#__codelineno-16-13"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">leftup</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">0</span><span class="p">];</span><span class="w"> </span><span class="c1">// 暂存 dp[i-1, j-1]</span>
|
||||||
|
<a id="__codelineno-16-14" name="__codelineno-16-14" href="#__codelineno-16-14"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">i</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-16-15" name="__codelineno-16-15" href="#__codelineno-16-15"></a><span class="w"> </span><span class="c1">// 状态转移:其余列</span>
|
||||||
|
<a id="__codelineno-16-16" name="__codelineno-16-16" href="#__codelineno-16-16"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">m</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-16-17" name="__codelineno-16-17" href="#__codelineno-16-17"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">temp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">j</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-16-18" name="__codelineno-16-18" href="#__codelineno-16-18"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">s</span><span class="p">.</span><span class="nx">charAt</span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="nx">t</span><span class="p">.</span><span class="nx">charAt</span><span class="p">(</span><span class="nx">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">))</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-16-19" name="__codelineno-16-19" href="#__codelineno-16-19"></a><span class="w"> </span><span class="c1">// 若两字符相等,则直接跳过此两字符</span>
|
||||||
|
<a id="__codelineno-16-20" name="__codelineno-16-20" href="#__codelineno-16-20"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">leftup</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-16-21" name="__codelineno-16-21" href="#__codelineno-16-21"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-16-22" name="__codelineno-16-22" href="#__codelineno-16-22"></a><span class="w"> </span><span class="c1">// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1</span>
|
||||||
|
<a id="__codelineno-16-23" name="__codelineno-16-23" href="#__codelineno-16-23"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">min</span><span class="p">(</span><span class="nb">Math</span><span class="p">.</span><span class="nx">min</span><span class="p">(</span><span class="nx">dp</span><span class="p">[</span><span class="nx">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">],</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">j</span><span class="p">]),</span><span class="w"> </span><span class="nx">leftup</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-16-24" name="__codelineno-16-24" href="#__codelineno-16-24"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-16-25" name="__codelineno-16-25" href="#__codelineno-16-25"></a><span class="w"> </span><span class="nx">leftup</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">temp</span><span class="p">;</span><span class="w"> </span><span class="c1">// 更新为下一轮的 dp[i-1, j-1]</span>
|
||||||
|
<a id="__codelineno-16-26" name="__codelineno-16-26" href="#__codelineno-16-26"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-16-27" name="__codelineno-16-27" href="#__codelineno-16-27"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-16-28" name="__codelineno-16-28" href="#__codelineno-16-28"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">m</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-16-29" name="__codelineno-16-29" href="#__codelineno-16-29"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">edit_distance.ts</span><pre><span></span><code><a id="__codelineno-17-1" name="__codelineno-17-1" href="#__codelineno-17-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">editDistanceDPComp</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">edit_distance.ts</span><pre><span></span><code><a id="__codelineno-17-1" name="__codelineno-17-1" href="#__codelineno-17-1"></a><span class="cm">/* 编辑距离:状态压缩后的动态规划 */</span>
|
||||||
|
<a id="__codelineno-17-2" name="__codelineno-17-2" href="#__codelineno-17-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">editDistanceDPComp</span><span class="p">(</span><span class="nx">s</span><span class="o">:</span><span class="w"> </span><span class="kt">string</span><span class="p">,</span><span class="w"> </span><span class="nx">t</span><span class="o">:</span><span class="w"> </span><span class="kt">string</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-17-3" name="__codelineno-17-3" href="#__codelineno-17-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">s</span><span class="p">.</span><span class="nx">length</span><span class="p">,</span>
|
||||||
|
<a id="__codelineno-17-4" name="__codelineno-17-4" href="#__codelineno-17-4"></a><span class="w"> </span><span class="nx">m</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">t</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-17-5" name="__codelineno-17-5" href="#__codelineno-17-5"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="ow">new</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">m</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-17-6" name="__codelineno-17-6" href="#__codelineno-17-6"></a><span class="w"> </span><span class="c1">// 状态转移:首行</span>
|
||||||
|
<a id="__codelineno-17-7" name="__codelineno-17-7" href="#__codelineno-17-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">m</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-17-8" name="__codelineno-17-8" href="#__codelineno-17-8"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">j</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-17-9" name="__codelineno-17-9" href="#__codelineno-17-9"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-17-10" name="__codelineno-17-10" href="#__codelineno-17-10"></a><span class="w"> </span><span class="c1">// 状态转移:其余行</span>
|
||||||
|
<a id="__codelineno-17-11" name="__codelineno-17-11" href="#__codelineno-17-11"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-17-12" name="__codelineno-17-12" href="#__codelineno-17-12"></a><span class="w"> </span><span class="c1">// 状态转移:首列</span>
|
||||||
|
<a id="__codelineno-17-13" name="__codelineno-17-13" href="#__codelineno-17-13"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">leftup</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">0</span><span class="p">];</span><span class="w"> </span><span class="c1">// 暂存 dp[i-1, j-1]</span>
|
||||||
|
<a id="__codelineno-17-14" name="__codelineno-17-14" href="#__codelineno-17-14"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">i</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-17-15" name="__codelineno-17-15" href="#__codelineno-17-15"></a><span class="w"> </span><span class="c1">// 状态转移:其余列</span>
|
||||||
|
<a id="__codelineno-17-16" name="__codelineno-17-16" href="#__codelineno-17-16"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">m</span><span class="p">;</span><span class="w"> </span><span class="nx">j</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-17-17" name="__codelineno-17-17" href="#__codelineno-17-17"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">temp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">j</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-17-18" name="__codelineno-17-18" href="#__codelineno-17-18"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">s</span><span class="p">.</span><span class="nx">charAt</span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="nx">t</span><span class="p">.</span><span class="nx">charAt</span><span class="p">(</span><span class="nx">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">))</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-17-19" name="__codelineno-17-19" href="#__codelineno-17-19"></a><span class="w"> </span><span class="c1">// 若两字符相等,则直接跳过此两字符</span>
|
||||||
|
<a id="__codelineno-17-20" name="__codelineno-17-20" href="#__codelineno-17-20"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">leftup</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-17-21" name="__codelineno-17-21" href="#__codelineno-17-21"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-17-22" name="__codelineno-17-22" href="#__codelineno-17-22"></a><span class="w"> </span><span class="c1">// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1</span>
|
||||||
|
<a id="__codelineno-17-23" name="__codelineno-17-23" href="#__codelineno-17-23"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">j</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">min</span><span class="p">(</span><span class="nb">Math</span><span class="p">.</span><span class="nx">min</span><span class="p">(</span><span class="nx">dp</span><span class="p">[</span><span class="nx">j</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">],</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">j</span><span class="p">]),</span><span class="w"> </span><span class="nx">leftup</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-17-24" name="__codelineno-17-24" href="#__codelineno-17-24"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-17-25" name="__codelineno-17-25" href="#__codelineno-17-25"></a><span class="w"> </span><span class="nx">leftup</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">temp</span><span class="p">;</span><span class="w"> </span><span class="c1">// 更新为下一轮的 dp[i-1, j-1]</span>
|
||||||
|
<a id="__codelineno-17-26" name="__codelineno-17-26" href="#__codelineno-17-26"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-17-27" name="__codelineno-17-27" href="#__codelineno-17-27"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-17-28" name="__codelineno-17-28" href="#__codelineno-17-28"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">m</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-17-29" name="__codelineno-17-29" href="#__codelineno-17-29"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
|
@ -3593,11 +3593,47 @@ dp[i, c] = \max(dp[i-1, c], dp[i-1, c - wgt[i-1]] + val[i-1])
|
|||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">knapsack.js</span><pre><span></span><code><a id="__codelineno-4-1" name="__codelineno-4-1" href="#__codelineno-4-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">knapsackDFS</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">knapsack.js</span><pre><span></span><code><a id="__codelineno-4-1" name="__codelineno-4-1" href="#__codelineno-4-1"></a><span class="cm">/* 0-1 背包:暴力搜索 */</span>
|
||||||
|
<a id="__codelineno-4-2" name="__codelineno-4-2" href="#__codelineno-4-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">knapsackDFS</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-4-3" name="__codelineno-4-3" href="#__codelineno-4-3"></a><span class="w"> </span><span class="c1">// 若已选完所有物品或背包无容量,则返回价值 0</span>
|
||||||
|
<a id="__codelineno-4-4" name="__codelineno-4-4" href="#__codelineno-4-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-4-5" name="__codelineno-4-5" href="#__codelineno-4-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-4-6" name="__codelineno-4-6" href="#__codelineno-4-6"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-4-7" name="__codelineno-4-7" href="#__codelineno-4-7"></a><span class="w"> </span><span class="c1">// 若超过背包容量,则只能不放入背包</span>
|
||||||
|
<a id="__codelineno-4-8" name="__codelineno-4-8" href="#__codelineno-4-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="nx">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-4-9" name="__codelineno-4-9" href="#__codelineno-4-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">knapsackDFS</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-4-10" name="__codelineno-4-10" href="#__codelineno-4-10"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-4-11" name="__codelineno-4-11" href="#__codelineno-4-11"></a><span class="w"> </span><span class="c1">// 计算不放入和放入物品 i 的最大价值</span>
|
||||||
|
<a id="__codelineno-4-12" name="__codelineno-4-12" href="#__codelineno-4-12"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">no</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">knapsackDFS</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-4-13" name="__codelineno-4-13" href="#__codelineno-4-13"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">yes</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">knapsackDFS</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">val</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-4-14" name="__codelineno-4-14" href="#__codelineno-4-14"></a><span class="w"> </span><span class="c1">// 返回两种方案中价值更大的那一个</span>
|
||||||
|
<a id="__codelineno-4-15" name="__codelineno-4-15" href="#__codelineno-4-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">max</span><span class="p">(</span><span class="nx">no</span><span class="p">,</span><span class="w"> </span><span class="nx">yes</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-4-16" name="__codelineno-4-16" href="#__codelineno-4-16"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">knapsack.ts</span><pre><span></span><code><a id="__codelineno-5-1" name="__codelineno-5-1" href="#__codelineno-5-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">knapsackDFS</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">knapsack.ts</span><pre><span></span><code><a id="__codelineno-5-1" name="__codelineno-5-1" href="#__codelineno-5-1"></a><span class="cm">/* 0-1 背包:暴力搜索 */</span>
|
||||||
|
<a id="__codelineno-5-2" name="__codelineno-5-2" href="#__codelineno-5-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">knapsackDFS</span><span class="p">(</span>
|
||||||
|
<a id="__codelineno-5-3" name="__codelineno-5-3" href="#__codelineno-5-3"></a><span class="w"> </span><span class="nx">wgt</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o"><</span><span class="kt">number</span><span class="o">></span><span class="p">,</span>
|
||||||
|
<a id="__codelineno-5-4" name="__codelineno-5-4" href="#__codelineno-5-4"></a><span class="w"> </span><span class="nx">val</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o"><</span><span class="kt">number</span><span class="o">></span><span class="p">,</span>
|
||||||
|
<a id="__codelineno-5-5" name="__codelineno-5-5" href="#__codelineno-5-5"></a><span class="w"> </span><span class="nx">i</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">,</span>
|
||||||
|
<a id="__codelineno-5-6" name="__codelineno-5-6" href="#__codelineno-5-6"></a><span class="w"> </span><span class="nx">c</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span>
|
||||||
|
<a id="__codelineno-5-7" name="__codelineno-5-7" href="#__codelineno-5-7"></a><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-5-8" name="__codelineno-5-8" href="#__codelineno-5-8"></a><span class="w"> </span><span class="c1">// 若已选完所有物品或背包无容量,则返回价值 0</span>
|
||||||
|
<a id="__codelineno-5-9" name="__codelineno-5-9" href="#__codelineno-5-9"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-5-10" name="__codelineno-5-10" href="#__codelineno-5-10"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-5-11" name="__codelineno-5-11" href="#__codelineno-5-11"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-5-12" name="__codelineno-5-12" href="#__codelineno-5-12"></a><span class="w"> </span><span class="c1">// 若超过背包容量,则只能不放入背包</span>
|
||||||
|
<a id="__codelineno-5-13" name="__codelineno-5-13" href="#__codelineno-5-13"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="nx">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-5-14" name="__codelineno-5-14" href="#__codelineno-5-14"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">knapsackDFS</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-5-15" name="__codelineno-5-15" href="#__codelineno-5-15"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-5-16" name="__codelineno-5-16" href="#__codelineno-5-16"></a><span class="w"> </span><span class="c1">// 计算不放入和放入物品 i 的最大价值</span>
|
||||||
|
<a id="__codelineno-5-17" name="__codelineno-5-17" href="#__codelineno-5-17"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">no</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">knapsackDFS</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-5-18" name="__codelineno-5-18" href="#__codelineno-5-18"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">yes</span><span class="w"> </span><span class="o">=</span>
|
||||||
|
<a id="__codelineno-5-19" name="__codelineno-5-19" href="#__codelineno-5-19"></a><span class="w"> </span><span class="nx">knapsackDFS</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">val</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-5-20" name="__codelineno-5-20" href="#__codelineno-5-20"></a><span class="w"> </span><span class="c1">// 返回两种方案中价值更大的那一个</span>
|
||||||
|
<a id="__codelineno-5-21" name="__codelineno-5-21" href="#__codelineno-5-21"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">max</span><span class="p">(</span><span class="nx">no</span><span class="p">,</span><span class="w"> </span><span class="nx">yes</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-5-22" name="__codelineno-5-22" href="#__codelineno-5-22"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
@ -3806,11 +3842,58 @@ dp[i, c] = \max(dp[i-1, c], dp[i-1, c - wgt[i-1]] + val[i-1])
|
|||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">knapsack.js</span><pre><span></span><code><a id="__codelineno-16-1" name="__codelineno-16-1" href="#__codelineno-16-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">knapsackDFSMem</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">knapsack.js</span><pre><span></span><code><a id="__codelineno-16-1" name="__codelineno-16-1" href="#__codelineno-16-1"></a><span class="cm">/* 0-1 背包:记忆化搜索 */</span>
|
||||||
|
<a id="__codelineno-16-2" name="__codelineno-16-2" href="#__codelineno-16-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">knapsackDFSMem</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">mem</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-16-3" name="__codelineno-16-3" href="#__codelineno-16-3"></a><span class="w"> </span><span class="c1">// 若已选完所有物品或背包无容量,则返回价值 0</span>
|
||||||
|
<a id="__codelineno-16-4" name="__codelineno-16-4" href="#__codelineno-16-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-16-5" name="__codelineno-16-5" href="#__codelineno-16-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-16-6" name="__codelineno-16-6" href="#__codelineno-16-6"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-16-7" name="__codelineno-16-7" href="#__codelineno-16-7"></a><span class="w"> </span><span class="c1">// 若已有记录,则直接返回</span>
|
||||||
|
<a id="__codelineno-16-8" name="__codelineno-16-8" href="#__codelineno-16-8"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">mem</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="p">]</span><span class="w"> </span><span class="o">!==</span><span class="w"> </span><span class="o">-</span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-16-9" name="__codelineno-16-9" href="#__codelineno-16-9"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">mem</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-16-10" name="__codelineno-16-10" href="#__codelineno-16-10"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-16-11" name="__codelineno-16-11" href="#__codelineno-16-11"></a><span class="w"> </span><span class="c1">// 若超过背包容量,则只能不放入背包</span>
|
||||||
|
<a id="__codelineno-16-12" name="__codelineno-16-12" href="#__codelineno-16-12"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="nx">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-16-13" name="__codelineno-16-13" href="#__codelineno-16-13"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">knapsackDFSMem</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">mem</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-16-14" name="__codelineno-16-14" href="#__codelineno-16-14"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-16-15" name="__codelineno-16-15" href="#__codelineno-16-15"></a><span class="w"> </span><span class="c1">// 计算不放入和放入物品 i 的最大价值</span>
|
||||||
|
<a id="__codelineno-16-16" name="__codelineno-16-16" href="#__codelineno-16-16"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">no</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">knapsackDFSMem</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">mem</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-16-17" name="__codelineno-16-17" href="#__codelineno-16-17"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">yes</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">knapsackDFSMem</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">mem</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">val</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-16-18" name="__codelineno-16-18" href="#__codelineno-16-18"></a><span class="w"> </span><span class="c1">// 记录并返回两种方案中价值更大的那一个</span>
|
||||||
|
<a id="__codelineno-16-19" name="__codelineno-16-19" href="#__codelineno-16-19"></a><span class="w"> </span><span class="nx">mem</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">max</span><span class="p">(</span><span class="nx">no</span><span class="p">,</span><span class="w"> </span><span class="nx">yes</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-16-20" name="__codelineno-16-20" href="#__codelineno-16-20"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">mem</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-16-21" name="__codelineno-16-21" href="#__codelineno-16-21"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">knapsack.ts</span><pre><span></span><code><a id="__codelineno-17-1" name="__codelineno-17-1" href="#__codelineno-17-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">knapsackDFSMem</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">knapsack.ts</span><pre><span></span><code><a id="__codelineno-17-1" name="__codelineno-17-1" href="#__codelineno-17-1"></a><span class="cm">/* 0-1 背包:记忆化搜索 */</span>
|
||||||
|
<a id="__codelineno-17-2" name="__codelineno-17-2" href="#__codelineno-17-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">knapsackDFSMem</span><span class="p">(</span>
|
||||||
|
<a id="__codelineno-17-3" name="__codelineno-17-3" href="#__codelineno-17-3"></a><span class="w"> </span><span class="nx">wgt</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o"><</span><span class="kt">number</span><span class="o">></span><span class="p">,</span>
|
||||||
|
<a id="__codelineno-17-4" name="__codelineno-17-4" href="#__codelineno-17-4"></a><span class="w"> </span><span class="nx">val</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o"><</span><span class="kt">number</span><span class="o">></span><span class="p">,</span>
|
||||||
|
<a id="__codelineno-17-5" name="__codelineno-17-5" href="#__codelineno-17-5"></a><span class="w"> </span><span class="nx">mem</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o"><</span><span class="nb">Array</span><span class="o"><</span><span class="kt">number</span><span class="o">>></span><span class="p">,</span>
|
||||||
|
<a id="__codelineno-17-6" name="__codelineno-17-6" href="#__codelineno-17-6"></a><span class="w"> </span><span class="nx">i</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">,</span>
|
||||||
|
<a id="__codelineno-17-7" name="__codelineno-17-7" href="#__codelineno-17-7"></a><span class="w"> </span><span class="nx">c</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span>
|
||||||
|
<a id="__codelineno-17-8" name="__codelineno-17-8" href="#__codelineno-17-8"></a><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-17-9" name="__codelineno-17-9" href="#__codelineno-17-9"></a><span class="w"> </span><span class="c1">// 若已选完所有物品或背包无容量,则返回价值 0</span>
|
||||||
|
<a id="__codelineno-17-10" name="__codelineno-17-10" href="#__codelineno-17-10"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">0</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">0</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-17-11" name="__codelineno-17-11" href="#__codelineno-17-11"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-17-12" name="__codelineno-17-12" href="#__codelineno-17-12"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-17-13" name="__codelineno-17-13" href="#__codelineno-17-13"></a><span class="w"> </span><span class="c1">// 若已有记录,则直接返回</span>
|
||||||
|
<a id="__codelineno-17-14" name="__codelineno-17-14" href="#__codelineno-17-14"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">mem</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="p">]</span><span class="w"> </span><span class="o">!==</span><span class="w"> </span><span class="o">-</span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-17-15" name="__codelineno-17-15" href="#__codelineno-17-15"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">mem</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-17-16" name="__codelineno-17-16" href="#__codelineno-17-16"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-17-17" name="__codelineno-17-17" href="#__codelineno-17-17"></a><span class="w"> </span><span class="c1">// 若超过背包容量,则只能不放入背包</span>
|
||||||
|
<a id="__codelineno-17-18" name="__codelineno-17-18" href="#__codelineno-17-18"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="nx">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-17-19" name="__codelineno-17-19" href="#__codelineno-17-19"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">knapsackDFSMem</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">mem</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-17-20" name="__codelineno-17-20" href="#__codelineno-17-20"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-17-21" name="__codelineno-17-21" href="#__codelineno-17-21"></a><span class="w"> </span><span class="c1">// 计算不放入和放入物品 i 的最大价值</span>
|
||||||
|
<a id="__codelineno-17-22" name="__codelineno-17-22" href="#__codelineno-17-22"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">no</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">knapsackDFSMem</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">mem</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-17-23" name="__codelineno-17-23" href="#__codelineno-17-23"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">yes</span><span class="w"> </span><span class="o">=</span>
|
||||||
|
<a id="__codelineno-17-24" name="__codelineno-17-24" href="#__codelineno-17-24"></a><span class="w"> </span><span class="nx">knapsackDFSMem</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">mem</span><span class="p">,</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">val</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-17-25" name="__codelineno-17-25" href="#__codelineno-17-25"></a><span class="w"> </span><span class="c1">// 记录并返回两种方案中价值更大的那一个</span>
|
||||||
|
<a id="__codelineno-17-26" name="__codelineno-17-26" href="#__codelineno-17-26"></a><span class="w"> </span><span class="nx">mem</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">max</span><span class="p">(</span><span class="nx">no</span><span class="p">,</span><span class="w"> </span><span class="nx">yes</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-17-27" name="__codelineno-17-27" href="#__codelineno-17-27"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">mem</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-17-28" name="__codelineno-17-28" href="#__codelineno-17-28"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
@ -4041,11 +4124,61 @@ dp[i, c] = \max(dp[i-1, c], dp[i-1, c - wgt[i-1]] + val[i-1])
|
|||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">knapsack.js</span><pre><span></span><code><a id="__codelineno-28-1" name="__codelineno-28-1" href="#__codelineno-28-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">knapsackDP</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">knapsack.js</span><pre><span></span><code><a id="__codelineno-28-1" name="__codelineno-28-1" href="#__codelineno-28-1"></a><span class="cm">/* 0-1 背包:动态规划 */</span>
|
||||||
|
<a id="__codelineno-28-2" name="__codelineno-28-2" href="#__codelineno-28-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">knapsackDP</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">cap</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-28-3" name="__codelineno-28-3" href="#__codelineno-28-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">wgt</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-28-4" name="__codelineno-28-4" href="#__codelineno-28-4"></a><span class="w"> </span><span class="c1">// 初始化 dp 表</span>
|
||||||
|
<a id="__codelineno-28-5" name="__codelineno-28-5" href="#__codelineno-28-5"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span>
|
||||||
|
<a id="__codelineno-28-6" name="__codelineno-28-6" href="#__codelineno-28-6"></a><span class="w"> </span><span class="p">.</span><span class="nx">fill</span><span class="p">(</span><span class="mf">0</span><span class="p">)</span>
|
||||||
|
<a id="__codelineno-28-7" name="__codelineno-28-7" href="#__codelineno-28-7"></a><span class="w"> </span><span class="p">.</span><span class="nx">map</span><span class="p">(()</span><span class="w"> </span><span class="p">=></span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">cap</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="mf">0</span><span class="p">));</span>
|
||||||
|
<a id="__codelineno-28-8" name="__codelineno-28-8" href="#__codelineno-28-8"></a><span class="w"> </span><span class="c1">// 状态转移</span>
|
||||||
|
<a id="__codelineno-28-9" name="__codelineno-28-9" href="#__codelineno-28-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-28-10" name="__codelineno-28-10" href="#__codelineno-28-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">cap</span><span class="p">;</span><span class="w"> </span><span class="nx">c</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-28-11" name="__codelineno-28-11" href="#__codelineno-28-11"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="nx">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-28-12" name="__codelineno-28-12" href="#__codelineno-28-12"></a><span class="w"> </span><span class="c1">// 若超过背包容量,则不选物品 i</span>
|
||||||
|
<a id="__codelineno-28-13" name="__codelineno-28-13" href="#__codelineno-28-13"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="nx">c</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-28-14" name="__codelineno-28-14" href="#__codelineno-28-14"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-28-15" name="__codelineno-28-15" href="#__codelineno-28-15"></a><span class="w"> </span><span class="c1">// 不选和选物品 i 这两种方案的较大值</span>
|
||||||
|
<a id="__codelineno-28-16" name="__codelineno-28-16" href="#__codelineno-28-16"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">max</span><span class="p">(</span>
|
||||||
|
<a id="__codelineno-28-17" name="__codelineno-28-17" href="#__codelineno-28-17"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="nx">c</span><span class="p">],</span>
|
||||||
|
<a id="__codelineno-28-18" name="__codelineno-28-18" href="#__codelineno-28-18"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="nx">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">val</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span>
|
||||||
|
<a id="__codelineno-28-19" name="__codelineno-28-19" href="#__codelineno-28-19"></a><span class="w"> </span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-28-20" name="__codelineno-28-20" href="#__codelineno-28-20"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-28-21" name="__codelineno-28-21" href="#__codelineno-28-21"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-28-22" name="__codelineno-28-22" href="#__codelineno-28-22"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-28-23" name="__codelineno-28-23" href="#__codelineno-28-23"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">][</span><span class="nx">cap</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-28-24" name="__codelineno-28-24" href="#__codelineno-28-24"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">knapsack.ts</span><pre><span></span><code><a id="__codelineno-29-1" name="__codelineno-29-1" href="#__codelineno-29-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">knapsackDP</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">knapsack.ts</span><pre><span></span><code><a id="__codelineno-29-1" name="__codelineno-29-1" href="#__codelineno-29-1"></a><span class="cm">/* 0-1 背包:动态规划 */</span>
|
||||||
|
<a id="__codelineno-29-2" name="__codelineno-29-2" href="#__codelineno-29-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">knapsackDP</span><span class="p">(</span>
|
||||||
|
<a id="__codelineno-29-3" name="__codelineno-29-3" href="#__codelineno-29-3"></a><span class="w"> </span><span class="nx">wgt</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o"><</span><span class="kt">number</span><span class="o">></span><span class="p">,</span>
|
||||||
|
<a id="__codelineno-29-4" name="__codelineno-29-4" href="#__codelineno-29-4"></a><span class="w"> </span><span class="nx">val</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o"><</span><span class="kt">number</span><span class="o">></span><span class="p">,</span>
|
||||||
|
<a id="__codelineno-29-5" name="__codelineno-29-5" href="#__codelineno-29-5"></a><span class="w"> </span><span class="nx">cap</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span>
|
||||||
|
<a id="__codelineno-29-6" name="__codelineno-29-6" href="#__codelineno-29-6"></a><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-29-7" name="__codelineno-29-7" href="#__codelineno-29-7"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">wgt</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-29-8" name="__codelineno-29-8" href="#__codelineno-29-8"></a><span class="w"> </span><span class="c1">// 初始化 dp 表</span>
|
||||||
|
<a id="__codelineno-29-9" name="__codelineno-29-9" href="#__codelineno-29-9"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="kt">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=></span>
|
||||||
|
<a id="__codelineno-29-10" name="__codelineno-29-10" href="#__codelineno-29-10"></a><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="kt">cap</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=></span><span class="w"> </span><span class="mf">0</span><span class="p">)</span>
|
||||||
|
<a id="__codelineno-29-11" name="__codelineno-29-11" href="#__codelineno-29-11"></a><span class="w"> </span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-29-12" name="__codelineno-29-12" href="#__codelineno-29-12"></a><span class="w"> </span><span class="c1">// 状态转移</span>
|
||||||
|
<a id="__codelineno-29-13" name="__codelineno-29-13" href="#__codelineno-29-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-29-14" name="__codelineno-29-14" href="#__codelineno-29-14"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">cap</span><span class="p">;</span><span class="w"> </span><span class="nx">c</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-29-15" name="__codelineno-29-15" href="#__codelineno-29-15"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="nx">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-29-16" name="__codelineno-29-16" href="#__codelineno-29-16"></a><span class="w"> </span><span class="c1">// 若超过背包容量,则不选物品 i</span>
|
||||||
|
<a id="__codelineno-29-17" name="__codelineno-29-17" href="#__codelineno-29-17"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="nx">c</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-29-18" name="__codelineno-29-18" href="#__codelineno-29-18"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-29-19" name="__codelineno-29-19" href="#__codelineno-29-19"></a><span class="w"> </span><span class="c1">// 不选和选物品 i 这两种方案的较大值</span>
|
||||||
|
<a id="__codelineno-29-20" name="__codelineno-29-20" href="#__codelineno-29-20"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">max</span><span class="p">(</span>
|
||||||
|
<a id="__codelineno-29-21" name="__codelineno-29-21" href="#__codelineno-29-21"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="nx">c</span><span class="p">],</span>
|
||||||
|
<a id="__codelineno-29-22" name="__codelineno-29-22" href="#__codelineno-29-22"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="nx">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">val</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span>
|
||||||
|
<a id="__codelineno-29-23" name="__codelineno-29-23" href="#__codelineno-29-23"></a><span class="w"> </span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-29-24" name="__codelineno-29-24" href="#__codelineno-29-24"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-29-25" name="__codelineno-29-25" href="#__codelineno-29-25"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-29-26" name="__codelineno-29-26" href="#__codelineno-29-26"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-29-27" name="__codelineno-29-27" href="#__codelineno-29-27"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">][</span><span class="nx">cap</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-29-28" name="__codelineno-29-28" href="#__codelineno-29-28"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
@ -4328,11 +4461,47 @@ dp[i, c] = \max(dp[i-1, c], dp[i-1, c - wgt[i-1]] + val[i-1])
|
|||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">knapsack.js</span><pre><span></span><code><a id="__codelineno-40-1" name="__codelineno-40-1" href="#__codelineno-40-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">knapsackDPComp</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">knapsack.js</span><pre><span></span><code><a id="__codelineno-40-1" name="__codelineno-40-1" href="#__codelineno-40-1"></a><span class="cm">/* 0-1 背包:状态压缩后的动态规划 */</span>
|
||||||
|
<a id="__codelineno-40-2" name="__codelineno-40-2" href="#__codelineno-40-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">knapsackDPComp</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">cap</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-40-3" name="__codelineno-40-3" href="#__codelineno-40-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">wgt</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-40-4" name="__codelineno-40-4" href="#__codelineno-40-4"></a><span class="w"> </span><span class="c1">// 初始化 dp 表</span>
|
||||||
|
<a id="__codelineno-40-5" name="__codelineno-40-5" href="#__codelineno-40-5"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">cap</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-40-6" name="__codelineno-40-6" href="#__codelineno-40-6"></a><span class="w"> </span><span class="c1">// 状态转移</span>
|
||||||
|
<a id="__codelineno-40-7" name="__codelineno-40-7" href="#__codelineno-40-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-40-8" name="__codelineno-40-8" href="#__codelineno-40-8"></a><span class="w"> </span><span class="c1">// 倒序遍历</span>
|
||||||
|
<a id="__codelineno-40-9" name="__codelineno-40-9" href="#__codelineno-40-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cap</span><span class="p">;</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">>=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">c</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-40-10" name="__codelineno-40-10" href="#__codelineno-40-10"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-40-11" name="__codelineno-40-11" href="#__codelineno-40-11"></a><span class="w"> </span><span class="c1">// 不选和选物品 i 这两种方案的较大值</span>
|
||||||
|
<a id="__codelineno-40-12" name="__codelineno-40-12" href="#__codelineno-40-12"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">max</span><span class="p">(</span><span class="nx">dp</span><span class="p">[</span><span class="nx">c</span><span class="p">],</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">val</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]);</span>
|
||||||
|
<a id="__codelineno-40-13" name="__codelineno-40-13" href="#__codelineno-40-13"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-40-14" name="__codelineno-40-14" href="#__codelineno-40-14"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-40-15" name="__codelineno-40-15" href="#__codelineno-40-15"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-40-16" name="__codelineno-40-16" href="#__codelineno-40-16"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">cap</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-40-17" name="__codelineno-40-17" href="#__codelineno-40-17"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">knapsack.ts</span><pre><span></span><code><a id="__codelineno-41-1" name="__codelineno-41-1" href="#__codelineno-41-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">knapsackDPComp</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">knapsack.ts</span><pre><span></span><code><a id="__codelineno-41-1" name="__codelineno-41-1" href="#__codelineno-41-1"></a><span class="cm">/* 0-1 背包:状态压缩后的动态规划 */</span>
|
||||||
|
<a id="__codelineno-41-2" name="__codelineno-41-2" href="#__codelineno-41-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">knapsackDPComp</span><span class="p">(</span>
|
||||||
|
<a id="__codelineno-41-3" name="__codelineno-41-3" href="#__codelineno-41-3"></a><span class="w"> </span><span class="nx">wgt</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o"><</span><span class="kt">number</span><span class="o">></span><span class="p">,</span>
|
||||||
|
<a id="__codelineno-41-4" name="__codelineno-41-4" href="#__codelineno-41-4"></a><span class="w"> </span><span class="nx">val</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o"><</span><span class="kt">number</span><span class="o">></span><span class="p">,</span>
|
||||||
|
<a id="__codelineno-41-5" name="__codelineno-41-5" href="#__codelineno-41-5"></a><span class="w"> </span><span class="nx">cap</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span>
|
||||||
|
<a id="__codelineno-41-6" name="__codelineno-41-6" href="#__codelineno-41-6"></a><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-41-7" name="__codelineno-41-7" href="#__codelineno-41-7"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">wgt</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-41-8" name="__codelineno-41-8" href="#__codelineno-41-8"></a><span class="w"> </span><span class="c1">// 初始化 dp 表</span>
|
||||||
|
<a id="__codelineno-41-9" name="__codelineno-41-9" href="#__codelineno-41-9"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">cap</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="mf">0</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-41-10" name="__codelineno-41-10" href="#__codelineno-41-10"></a><span class="w"> </span><span class="c1">// 状态转移</span>
|
||||||
|
<a id="__codelineno-41-11" name="__codelineno-41-11" href="#__codelineno-41-11"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-41-12" name="__codelineno-41-12" href="#__codelineno-41-12"></a><span class="w"> </span><span class="c1">// 倒序遍历</span>
|
||||||
|
<a id="__codelineno-41-13" name="__codelineno-41-13" href="#__codelineno-41-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cap</span><span class="p">;</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">>=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">c</span><span class="o">--</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-41-14" name="__codelineno-41-14" href="#__codelineno-41-14"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-41-15" name="__codelineno-41-15" href="#__codelineno-41-15"></a><span class="w"> </span><span class="c1">// 不选和选物品 i 这两种方案的较大值</span>
|
||||||
|
<a id="__codelineno-41-16" name="__codelineno-41-16" href="#__codelineno-41-16"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">max</span><span class="p">(</span><span class="nx">dp</span><span class="p">[</span><span class="nx">c</span><span class="p">],</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">val</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]);</span>
|
||||||
|
<a id="__codelineno-41-17" name="__codelineno-41-17" href="#__codelineno-41-17"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-41-18" name="__codelineno-41-18" href="#__codelineno-41-18"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-41-19" name="__codelineno-41-19" href="#__codelineno-41-19"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-41-20" name="__codelineno-41-20" href="#__codelineno-41-20"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">cap</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-41-21" name="__codelineno-41-21" href="#__codelineno-41-21"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
|
@ -3742,11 +3742,61 @@ dp[i, c] = \max(dp[i-1, c], dp[i, c - wgt[i-1]] + val[i-1])
|
|||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">unbounded_knapsack.js</span><pre><span></span><code><a id="__codelineno-4-1" name="__codelineno-4-1" href="#__codelineno-4-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">unboundedKnapsackDP</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">unbounded_knapsack.js</span><pre><span></span><code><a id="__codelineno-4-1" name="__codelineno-4-1" href="#__codelineno-4-1"></a><span class="cm">/* 完全背包:动态规划 */</span>
|
||||||
|
<a id="__codelineno-4-2" name="__codelineno-4-2" href="#__codelineno-4-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">unboundedKnapsackDP</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">cap</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-4-3" name="__codelineno-4-3" href="#__codelineno-4-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">wgt</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-4-4" name="__codelineno-4-4" href="#__codelineno-4-4"></a><span class="w"> </span><span class="c1">// 初始化 dp 表</span>
|
||||||
|
<a id="__codelineno-4-5" name="__codelineno-4-5" href="#__codelineno-4-5"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=></span>
|
||||||
|
<a id="__codelineno-4-6" name="__codelineno-4-6" href="#__codelineno-4-6"></a><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="nx">cap</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=></span><span class="w"> </span><span class="mf">0</span><span class="p">)</span>
|
||||||
|
<a id="__codelineno-4-7" name="__codelineno-4-7" href="#__codelineno-4-7"></a><span class="w"> </span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-4-8" name="__codelineno-4-8" href="#__codelineno-4-8"></a><span class="w"> </span><span class="c1">// 状态转移</span>
|
||||||
|
<a id="__codelineno-4-9" name="__codelineno-4-9" href="#__codelineno-4-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-4-10" name="__codelineno-4-10" href="#__codelineno-4-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">cap</span><span class="p">;</span><span class="w"> </span><span class="nx">c</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-4-11" name="__codelineno-4-11" href="#__codelineno-4-11"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="nx">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-4-12" name="__codelineno-4-12" href="#__codelineno-4-12"></a><span class="w"> </span><span class="c1">// 若超过背包容量,则不选物品 i</span>
|
||||||
|
<a id="__codelineno-4-13" name="__codelineno-4-13" href="#__codelineno-4-13"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="nx">c</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-4-14" name="__codelineno-4-14" href="#__codelineno-4-14"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-4-15" name="__codelineno-4-15" href="#__codelineno-4-15"></a><span class="w"> </span><span class="c1">// 不选和选物品 i 这两种方案的较大值</span>
|
||||||
|
<a id="__codelineno-4-16" name="__codelineno-4-16" href="#__codelineno-4-16"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">max</span><span class="p">(</span>
|
||||||
|
<a id="__codelineno-4-17" name="__codelineno-4-17" href="#__codelineno-4-17"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="nx">c</span><span class="p">],</span>
|
||||||
|
<a id="__codelineno-4-18" name="__codelineno-4-18" href="#__codelineno-4-18"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">val</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span>
|
||||||
|
<a id="__codelineno-4-19" name="__codelineno-4-19" href="#__codelineno-4-19"></a><span class="w"> </span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-4-20" name="__codelineno-4-20" href="#__codelineno-4-20"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-4-21" name="__codelineno-4-21" href="#__codelineno-4-21"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-4-22" name="__codelineno-4-22" href="#__codelineno-4-22"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-4-23" name="__codelineno-4-23" href="#__codelineno-4-23"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">][</span><span class="nx">cap</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-4-24" name="__codelineno-4-24" href="#__codelineno-4-24"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">unbounded_knapsack.ts</span><pre><span></span><code><a id="__codelineno-5-1" name="__codelineno-5-1" href="#__codelineno-5-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">unboundedKnapsackDP</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">unbounded_knapsack.ts</span><pre><span></span><code><a id="__codelineno-5-1" name="__codelineno-5-1" href="#__codelineno-5-1"></a><span class="cm">/* 完全背包:动态规划 */</span>
|
||||||
|
<a id="__codelineno-5-2" name="__codelineno-5-2" href="#__codelineno-5-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">unboundedKnapsackDP</span><span class="p">(</span>
|
||||||
|
<a id="__codelineno-5-3" name="__codelineno-5-3" href="#__codelineno-5-3"></a><span class="w"> </span><span class="nx">wgt</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o"><</span><span class="kt">number</span><span class="o">></span><span class="p">,</span>
|
||||||
|
<a id="__codelineno-5-4" name="__codelineno-5-4" href="#__codelineno-5-4"></a><span class="w"> </span><span class="nx">val</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o"><</span><span class="kt">number</span><span class="o">></span><span class="p">,</span>
|
||||||
|
<a id="__codelineno-5-5" name="__codelineno-5-5" href="#__codelineno-5-5"></a><span class="w"> </span><span class="nx">cap</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span>
|
||||||
|
<a id="__codelineno-5-6" name="__codelineno-5-6" href="#__codelineno-5-6"></a><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-5-7" name="__codelineno-5-7" href="#__codelineno-5-7"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">wgt</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-5-8" name="__codelineno-5-8" href="#__codelineno-5-8"></a><span class="w"> </span><span class="c1">// 初始化 dp 表</span>
|
||||||
|
<a id="__codelineno-5-9" name="__codelineno-5-9" href="#__codelineno-5-9"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="kt">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=></span>
|
||||||
|
<a id="__codelineno-5-10" name="__codelineno-5-10" href="#__codelineno-5-10"></a><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="kt">cap</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=></span><span class="w"> </span><span class="mf">0</span><span class="p">)</span>
|
||||||
|
<a id="__codelineno-5-11" name="__codelineno-5-11" href="#__codelineno-5-11"></a><span class="w"> </span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-5-12" name="__codelineno-5-12" href="#__codelineno-5-12"></a><span class="w"> </span><span class="c1">// 状态转移</span>
|
||||||
|
<a id="__codelineno-5-13" name="__codelineno-5-13" href="#__codelineno-5-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-5-14" name="__codelineno-5-14" href="#__codelineno-5-14"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">cap</span><span class="p">;</span><span class="w"> </span><span class="nx">c</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-5-15" name="__codelineno-5-15" href="#__codelineno-5-15"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="nx">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-5-16" name="__codelineno-5-16" href="#__codelineno-5-16"></a><span class="w"> </span><span class="c1">// 若超过背包容量,则不选物品 i</span>
|
||||||
|
<a id="__codelineno-5-17" name="__codelineno-5-17" href="#__codelineno-5-17"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="nx">c</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-5-18" name="__codelineno-5-18" href="#__codelineno-5-18"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-5-19" name="__codelineno-5-19" href="#__codelineno-5-19"></a><span class="w"> </span><span class="c1">// 不选和选物品 i 这两种方案的较大值</span>
|
||||||
|
<a id="__codelineno-5-20" name="__codelineno-5-20" href="#__codelineno-5-20"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">max</span><span class="p">(</span>
|
||||||
|
<a id="__codelineno-5-21" name="__codelineno-5-21" href="#__codelineno-5-21"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="nx">c</span><span class="p">],</span>
|
||||||
|
<a id="__codelineno-5-22" name="__codelineno-5-22" href="#__codelineno-5-22"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">val</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span>
|
||||||
|
<a id="__codelineno-5-23" name="__codelineno-5-23" href="#__codelineno-5-23"></a><span class="w"> </span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-5-24" name="__codelineno-5-24" href="#__codelineno-5-24"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-5-25" name="__codelineno-5-25" href="#__codelineno-5-25"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-5-26" name="__codelineno-5-26" href="#__codelineno-5-26"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-5-27" name="__codelineno-5-27" href="#__codelineno-5-27"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">][</span><span class="nx">cap</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-5-28" name="__codelineno-5-28" href="#__codelineno-5-28"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
@ -3981,11 +4031,51 @@ dp[i, c] = \max(dp[i-1, c], dp[i, c - wgt[i-1]] + val[i-1])
|
|||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">unbounded_knapsack.js</span><pre><span></span><code><a id="__codelineno-16-1" name="__codelineno-16-1" href="#__codelineno-16-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">unboundedKnapsackDPComp</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">unbounded_knapsack.js</span><pre><span></span><code><a id="__codelineno-16-1" name="__codelineno-16-1" href="#__codelineno-16-1"></a><span class="cm">/* 完全背包:状态压缩后的动态规划 */</span>
|
||||||
|
<a id="__codelineno-16-2" name="__codelineno-16-2" href="#__codelineno-16-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">unboundedKnapsackDPComp</span><span class="p">(</span><span class="nx">wgt</span><span class="p">,</span><span class="w"> </span><span class="nx">val</span><span class="p">,</span><span class="w"> </span><span class="nx">cap</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-16-3" name="__codelineno-16-3" href="#__codelineno-16-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">wgt</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-16-4" name="__codelineno-16-4" href="#__codelineno-16-4"></a><span class="w"> </span><span class="c1">// 初始化 dp 表</span>
|
||||||
|
<a id="__codelineno-16-5" name="__codelineno-16-5" href="#__codelineno-16-5"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="nx">cap</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=></span><span class="w"> </span><span class="mf">0</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-16-6" name="__codelineno-16-6" href="#__codelineno-16-6"></a><span class="w"> </span><span class="c1">// 状态转移</span>
|
||||||
|
<a id="__codelineno-16-7" name="__codelineno-16-7" href="#__codelineno-16-7"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-16-8" name="__codelineno-16-8" href="#__codelineno-16-8"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">cap</span><span class="p">;</span><span class="w"> </span><span class="nx">c</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-16-9" name="__codelineno-16-9" href="#__codelineno-16-9"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="nx">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-16-10" name="__codelineno-16-10" href="#__codelineno-16-10"></a><span class="w"> </span><span class="c1">// 若超过背包容量,则不选物品 i</span>
|
||||||
|
<a id="__codelineno-16-11" name="__codelineno-16-11" href="#__codelineno-16-11"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">c</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-16-12" name="__codelineno-16-12" href="#__codelineno-16-12"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-16-13" name="__codelineno-16-13" href="#__codelineno-16-13"></a><span class="w"> </span><span class="c1">// 不选和选物品 i 这两种方案的较大值</span>
|
||||||
|
<a id="__codelineno-16-14" name="__codelineno-16-14" href="#__codelineno-16-14"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">max</span><span class="p">(</span><span class="nx">dp</span><span class="p">[</span><span class="nx">c</span><span class="p">],</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">val</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]);</span>
|
||||||
|
<a id="__codelineno-16-15" name="__codelineno-16-15" href="#__codelineno-16-15"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-16-16" name="__codelineno-16-16" href="#__codelineno-16-16"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-16-17" name="__codelineno-16-17" href="#__codelineno-16-17"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-16-18" name="__codelineno-16-18" href="#__codelineno-16-18"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">cap</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-16-19" name="__codelineno-16-19" href="#__codelineno-16-19"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">unbounded_knapsack.ts</span><pre><span></span><code><a id="__codelineno-17-1" name="__codelineno-17-1" href="#__codelineno-17-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">unboundedKnapsackDPComp</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">unbounded_knapsack.ts</span><pre><span></span><code><a id="__codelineno-17-1" name="__codelineno-17-1" href="#__codelineno-17-1"></a><span class="cm">/* 完全背包:状态压缩后的动态规划 */</span>
|
||||||
|
<a id="__codelineno-17-2" name="__codelineno-17-2" href="#__codelineno-17-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">unboundedKnapsackDPComp</span><span class="p">(</span>
|
||||||
|
<a id="__codelineno-17-3" name="__codelineno-17-3" href="#__codelineno-17-3"></a><span class="w"> </span><span class="nx">wgt</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o"><</span><span class="kt">number</span><span class="o">></span><span class="p">,</span>
|
||||||
|
<a id="__codelineno-17-4" name="__codelineno-17-4" href="#__codelineno-17-4"></a><span class="w"> </span><span class="nx">val</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o"><</span><span class="kt">number</span><span class="o">></span><span class="p">,</span>
|
||||||
|
<a id="__codelineno-17-5" name="__codelineno-17-5" href="#__codelineno-17-5"></a><span class="w"> </span><span class="nx">cap</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span>
|
||||||
|
<a id="__codelineno-17-6" name="__codelineno-17-6" href="#__codelineno-17-6"></a><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-17-7" name="__codelineno-17-7" href="#__codelineno-17-7"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">wgt</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-17-8" name="__codelineno-17-8" href="#__codelineno-17-8"></a><span class="w"> </span><span class="c1">// 初始化 dp 表</span>
|
||||||
|
<a id="__codelineno-17-9" name="__codelineno-17-9" href="#__codelineno-17-9"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="kt">cap</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=></span><span class="w"> </span><span class="mf">0</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-17-10" name="__codelineno-17-10" href="#__codelineno-17-10"></a><span class="w"> </span><span class="c1">// 状态转移</span>
|
||||||
|
<a id="__codelineno-17-11" name="__codelineno-17-11" href="#__codelineno-17-11"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-17-12" name="__codelineno-17-12" href="#__codelineno-17-12"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">c</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">cap</span><span class="p">;</span><span class="w"> </span><span class="nx">c</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-17-13" name="__codelineno-17-13" href="#__codelineno-17-13"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="nx">c</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-17-14" name="__codelineno-17-14" href="#__codelineno-17-14"></a><span class="w"> </span><span class="c1">// 若超过背包容量,则不选物品 i</span>
|
||||||
|
<a id="__codelineno-17-15" name="__codelineno-17-15" href="#__codelineno-17-15"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">c</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-17-16" name="__codelineno-17-16" href="#__codelineno-17-16"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-17-17" name="__codelineno-17-17" href="#__codelineno-17-17"></a><span class="w"> </span><span class="c1">// 不选和选物品 i 这两种方案的较大值</span>
|
||||||
|
<a id="__codelineno-17-18" name="__codelineno-17-18" href="#__codelineno-17-18"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">c</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">max</span><span class="p">(</span><span class="nx">dp</span><span class="p">[</span><span class="nx">c</span><span class="p">],</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">c</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">wgt</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">val</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]);</span>
|
||||||
|
<a id="__codelineno-17-19" name="__codelineno-17-19" href="#__codelineno-17-19"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-17-20" name="__codelineno-17-20" href="#__codelineno-17-20"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-17-21" name="__codelineno-17-21" href="#__codelineno-17-21"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-17-22" name="__codelineno-17-22" href="#__codelineno-17-22"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">cap</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-17-23" name="__codelineno-17-23" href="#__codelineno-17-23"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
@ -4251,11 +4341,61 @@ dp[i, a] = \min(dp[i-1, a], dp[i, a - coins[i-1]] + 1)
|
|||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">coin_change.js</span><pre><span></span><code><a id="__codelineno-28-1" name="__codelineno-28-1" href="#__codelineno-28-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">coinChangeDP</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">coin_change.js</span><pre><span></span><code><a id="__codelineno-28-1" name="__codelineno-28-1" href="#__codelineno-28-1"></a><span class="cm">/* 零钱兑换:动态规划 */</span>
|
||||||
|
<a id="__codelineno-28-2" name="__codelineno-28-2" href="#__codelineno-28-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">coinChangeDP</span><span class="p">(</span><span class="nx">coins</span><span class="p">,</span><span class="w"> </span><span class="nx">amt</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-28-3" name="__codelineno-28-3" href="#__codelineno-28-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">coins</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-28-4" name="__codelineno-28-4" href="#__codelineno-28-4"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">MAX</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">amt</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-28-5" name="__codelineno-28-5" href="#__codelineno-28-5"></a><span class="w"> </span><span class="c1">// 初始化 dp 表</span>
|
||||||
|
<a id="__codelineno-28-6" name="__codelineno-28-6" href="#__codelineno-28-6"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=></span>
|
||||||
|
<a id="__codelineno-28-7" name="__codelineno-28-7" href="#__codelineno-28-7"></a><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="nx">amt</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=></span><span class="w"> </span><span class="mf">0</span><span class="p">)</span>
|
||||||
|
<a id="__codelineno-28-8" name="__codelineno-28-8" href="#__codelineno-28-8"></a><span class="w"> </span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-28-9" name="__codelineno-28-9" href="#__codelineno-28-9"></a><span class="w"> </span><span class="c1">// 状态转移:首行首列</span>
|
||||||
|
<a id="__codelineno-28-10" name="__codelineno-28-10" href="#__codelineno-28-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">amt</span><span class="p">;</span><span class="w"> </span><span class="nx">a</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-28-11" name="__codelineno-28-11" href="#__codelineno-28-11"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">0</span><span class="p">][</span><span class="nx">a</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">MAX</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-28-12" name="__codelineno-28-12" href="#__codelineno-28-12"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-28-13" name="__codelineno-28-13" href="#__codelineno-28-13"></a><span class="w"> </span><span class="c1">// 状态转移:其余行列</span>
|
||||||
|
<a id="__codelineno-28-14" name="__codelineno-28-14" href="#__codelineno-28-14"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-28-15" name="__codelineno-28-15" href="#__codelineno-28-15"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">amt</span><span class="p">;</span><span class="w"> </span><span class="nx">a</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-28-16" name="__codelineno-28-16" href="#__codelineno-28-16"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">coins</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="nx">a</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-28-17" name="__codelineno-28-17" href="#__codelineno-28-17"></a><span class="w"> </span><span class="c1">// 若超过背包容量,则不选硬币 i</span>
|
||||||
|
<a id="__codelineno-28-18" name="__codelineno-28-18" href="#__codelineno-28-18"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">a</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="nx">a</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-28-19" name="__codelineno-28-19" href="#__codelineno-28-19"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-28-20" name="__codelineno-28-20" href="#__codelineno-28-20"></a><span class="w"> </span><span class="c1">// 不选和选硬币 i 这两种方案的较小值</span>
|
||||||
|
<a id="__codelineno-28-21" name="__codelineno-28-21" href="#__codelineno-28-21"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">a</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">min</span><span class="p">(</span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="nx">a</span><span class="p">],</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">a</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">coins</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-28-22" name="__codelineno-28-22" href="#__codelineno-28-22"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-28-23" name="__codelineno-28-23" href="#__codelineno-28-23"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-28-24" name="__codelineno-28-24" href="#__codelineno-28-24"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-28-25" name="__codelineno-28-25" href="#__codelineno-28-25"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">][</span><span class="nx">amt</span><span class="p">]</span><span class="w"> </span><span class="o">!==</span><span class="w"> </span><span class="nx">MAX</span><span class="w"> </span><span class="o">?</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">][</span><span class="nx">amt</span><span class="p">]</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="o">-</span><span class="mf">1</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-28-26" name="__codelineno-28-26" href="#__codelineno-28-26"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">coin_change.ts</span><pre><span></span><code><a id="__codelineno-29-1" name="__codelineno-29-1" href="#__codelineno-29-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">coinChangeDP</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">coin_change.ts</span><pre><span></span><code><a id="__codelineno-29-1" name="__codelineno-29-1" href="#__codelineno-29-1"></a><span class="cm">/* 零钱兑换:动态规划 */</span>
|
||||||
|
<a id="__codelineno-29-2" name="__codelineno-29-2" href="#__codelineno-29-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">coinChangeDP</span><span class="p">(</span><span class="nx">coins</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o"><</span><span class="kt">number</span><span class="o">></span><span class="p">,</span><span class="w"> </span><span class="nx">amt</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-29-3" name="__codelineno-29-3" href="#__codelineno-29-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">coins</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-29-4" name="__codelineno-29-4" href="#__codelineno-29-4"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">MAX</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">amt</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-29-5" name="__codelineno-29-5" href="#__codelineno-29-5"></a><span class="w"> </span><span class="c1">// 初始化 dp 表</span>
|
||||||
|
<a id="__codelineno-29-6" name="__codelineno-29-6" href="#__codelineno-29-6"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="kt">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=></span>
|
||||||
|
<a id="__codelineno-29-7" name="__codelineno-29-7" href="#__codelineno-29-7"></a><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="kt">amt</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=></span><span class="w"> </span><span class="mf">0</span><span class="p">)</span>
|
||||||
|
<a id="__codelineno-29-8" name="__codelineno-29-8" href="#__codelineno-29-8"></a><span class="w"> </span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-29-9" name="__codelineno-29-9" href="#__codelineno-29-9"></a><span class="w"> </span><span class="c1">// 状态转移:首行首列</span>
|
||||||
|
<a id="__codelineno-29-10" name="__codelineno-29-10" href="#__codelineno-29-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">amt</span><span class="p">;</span><span class="w"> </span><span class="nx">a</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-29-11" name="__codelineno-29-11" href="#__codelineno-29-11"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">0</span><span class="p">][</span><span class="nx">a</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">MAX</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-29-12" name="__codelineno-29-12" href="#__codelineno-29-12"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-29-13" name="__codelineno-29-13" href="#__codelineno-29-13"></a><span class="w"> </span><span class="c1">// 状态转移:其余行列</span>
|
||||||
|
<a id="__codelineno-29-14" name="__codelineno-29-14" href="#__codelineno-29-14"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-29-15" name="__codelineno-29-15" href="#__codelineno-29-15"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">amt</span><span class="p">;</span><span class="w"> </span><span class="nx">a</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-29-16" name="__codelineno-29-16" href="#__codelineno-29-16"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">coins</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="nx">a</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-29-17" name="__codelineno-29-17" href="#__codelineno-29-17"></a><span class="w"> </span><span class="c1">// 若超过背包容量,则不选硬币 i</span>
|
||||||
|
<a id="__codelineno-29-18" name="__codelineno-29-18" href="#__codelineno-29-18"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">a</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="nx">a</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-29-19" name="__codelineno-29-19" href="#__codelineno-29-19"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-29-20" name="__codelineno-29-20" href="#__codelineno-29-20"></a><span class="w"> </span><span class="c1">// 不选和选硬币 i 这两种方案的较小值</span>
|
||||||
|
<a id="__codelineno-29-21" name="__codelineno-29-21" href="#__codelineno-29-21"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">a</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">min</span><span class="p">(</span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="nx">a</span><span class="p">],</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">a</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">coins</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-29-22" name="__codelineno-29-22" href="#__codelineno-29-22"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-29-23" name="__codelineno-29-23" href="#__codelineno-29-23"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-29-24" name="__codelineno-29-24" href="#__codelineno-29-24"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-29-25" name="__codelineno-29-25" href="#__codelineno-29-25"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">][</span><span class="nx">amt</span><span class="p">]</span><span class="w"> </span><span class="o">!==</span><span class="w"> </span><span class="nx">MAX</span><span class="w"> </span><span class="o">?</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">][</span><span class="nx">amt</span><span class="p">]</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="o">-</span><span class="mf">1</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-29-26" name="__codelineno-29-26" href="#__codelineno-29-26"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
@ -4560,11 +4700,51 @@ dp[i, a] = \min(dp[i-1, a], dp[i, a - coins[i-1]] + 1)
|
|||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">coin_change.js</span><pre><span></span><code><a id="__codelineno-40-1" name="__codelineno-40-1" href="#__codelineno-40-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">coinChangeDPComp</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">coin_change.js</span><pre><span></span><code><a id="__codelineno-40-1" name="__codelineno-40-1" href="#__codelineno-40-1"></a><span class="cm">/* 零钱兑换:状态压缩后的动态规划 */</span>
|
||||||
|
<a id="__codelineno-40-2" name="__codelineno-40-2" href="#__codelineno-40-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">coinChangeDPComp</span><span class="p">(</span><span class="nx">coins</span><span class="p">,</span><span class="w"> </span><span class="nx">amt</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-40-3" name="__codelineno-40-3" href="#__codelineno-40-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">coins</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-40-4" name="__codelineno-40-4" href="#__codelineno-40-4"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">MAX</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">amt</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-40-5" name="__codelineno-40-5" href="#__codelineno-40-5"></a><span class="w"> </span><span class="c1">// 初始化 dp 表</span>
|
||||||
|
<a id="__codelineno-40-6" name="__codelineno-40-6" href="#__codelineno-40-6"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="nx">amt</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=></span><span class="w"> </span><span class="nx">MAX</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-40-7" name="__codelineno-40-7" href="#__codelineno-40-7"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-40-8" name="__codelineno-40-8" href="#__codelineno-40-8"></a><span class="w"> </span><span class="c1">// 状态转移</span>
|
||||||
|
<a id="__codelineno-40-9" name="__codelineno-40-9" href="#__codelineno-40-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-40-10" name="__codelineno-40-10" href="#__codelineno-40-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">amt</span><span class="p">;</span><span class="w"> </span><span class="nx">a</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-40-11" name="__codelineno-40-11" href="#__codelineno-40-11"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">coins</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="nx">a</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-40-12" name="__codelineno-40-12" href="#__codelineno-40-12"></a><span class="w"> </span><span class="c1">// 若超过背包容量,则不选硬币 i</span>
|
||||||
|
<a id="__codelineno-40-13" name="__codelineno-40-13" href="#__codelineno-40-13"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">a</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">a</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-40-14" name="__codelineno-40-14" href="#__codelineno-40-14"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-40-15" name="__codelineno-40-15" href="#__codelineno-40-15"></a><span class="w"> </span><span class="c1">// 不选和选硬币 i 这两种方案的较小值</span>
|
||||||
|
<a id="__codelineno-40-16" name="__codelineno-40-16" href="#__codelineno-40-16"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">a</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">min</span><span class="p">(</span><span class="nx">dp</span><span class="p">[</span><span class="nx">a</span><span class="p">],</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">a</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">coins</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-40-17" name="__codelineno-40-17" href="#__codelineno-40-17"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-40-18" name="__codelineno-40-18" href="#__codelineno-40-18"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-40-19" name="__codelineno-40-19" href="#__codelineno-40-19"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-40-20" name="__codelineno-40-20" href="#__codelineno-40-20"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">amt</span><span class="p">]</span><span class="w"> </span><span class="o">!==</span><span class="w"> </span><span class="nx">MAX</span><span class="w"> </span><span class="o">?</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">amt</span><span class="p">]</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="o">-</span><span class="mf">1</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-40-21" name="__codelineno-40-21" href="#__codelineno-40-21"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">coin_change.ts</span><pre><span></span><code><a id="__codelineno-41-1" name="__codelineno-41-1" href="#__codelineno-41-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">coinChangeDPComp</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">coin_change.ts</span><pre><span></span><code><a id="__codelineno-41-1" name="__codelineno-41-1" href="#__codelineno-41-1"></a><span class="cm">/* 零钱兑换:状态压缩后的动态规划 */</span>
|
||||||
|
<a id="__codelineno-41-2" name="__codelineno-41-2" href="#__codelineno-41-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">coinChangeDPComp</span><span class="p">(</span><span class="nx">coins</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o"><</span><span class="kt">number</span><span class="o">></span><span class="p">,</span><span class="w"> </span><span class="nx">amt</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-41-3" name="__codelineno-41-3" href="#__codelineno-41-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">coins</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-41-4" name="__codelineno-41-4" href="#__codelineno-41-4"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">MAX</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">amt</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-41-5" name="__codelineno-41-5" href="#__codelineno-41-5"></a><span class="w"> </span><span class="c1">// 初始化 dp 表</span>
|
||||||
|
<a id="__codelineno-41-6" name="__codelineno-41-6" href="#__codelineno-41-6"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="kt">amt</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=></span><span class="w"> </span><span class="nx">MAX</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-41-7" name="__codelineno-41-7" href="#__codelineno-41-7"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-41-8" name="__codelineno-41-8" href="#__codelineno-41-8"></a><span class="w"> </span><span class="c1">// 状态转移</span>
|
||||||
|
<a id="__codelineno-41-9" name="__codelineno-41-9" href="#__codelineno-41-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-41-10" name="__codelineno-41-10" href="#__codelineno-41-10"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">amt</span><span class="p">;</span><span class="w"> </span><span class="nx">a</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-41-11" name="__codelineno-41-11" href="#__codelineno-41-11"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">coins</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="nx">a</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-41-12" name="__codelineno-41-12" href="#__codelineno-41-12"></a><span class="w"> </span><span class="c1">// 若超过背包容量,则不选硬币 i</span>
|
||||||
|
<a id="__codelineno-41-13" name="__codelineno-41-13" href="#__codelineno-41-13"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">a</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">a</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-41-14" name="__codelineno-41-14" href="#__codelineno-41-14"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-41-15" name="__codelineno-41-15" href="#__codelineno-41-15"></a><span class="w"> </span><span class="c1">// 不选和选硬币 i 这两种方案的较小值</span>
|
||||||
|
<a id="__codelineno-41-16" name="__codelineno-41-16" href="#__codelineno-41-16"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">a</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">min</span><span class="p">(</span><span class="nx">dp</span><span class="p">[</span><span class="nx">a</span><span class="p">],</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">a</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">coins</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-41-17" name="__codelineno-41-17" href="#__codelineno-41-17"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-41-18" name="__codelineno-41-18" href="#__codelineno-41-18"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-41-19" name="__codelineno-41-19" href="#__codelineno-41-19"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-41-20" name="__codelineno-41-20" href="#__codelineno-41-20"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">amt</span><span class="p">]</span><span class="w"> </span><span class="o">!==</span><span class="w"> </span><span class="nx">MAX</span><span class="w"> </span><span class="o">?</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">amt</span><span class="p">]</span><span class="w"> </span><span class="o">:</span><span class="w"> </span><span class="o">-</span><span class="mf">1</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-41-21" name="__codelineno-41-21" href="#__codelineno-41-21"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
@ -4821,11 +5001,59 @@ dp[i, a] = dp[i-1, a] + dp[i, a - coins[i-1]]
|
|||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">coin_change_ii.js</span><pre><span></span><code><a id="__codelineno-52-1" name="__codelineno-52-1" href="#__codelineno-52-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">coinChangeIIDP</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">coin_change_ii.js</span><pre><span></span><code><a id="__codelineno-52-1" name="__codelineno-52-1" href="#__codelineno-52-1"></a><span class="cm">/* 零钱兑换 II:动态规划 */</span>
|
||||||
|
<a id="__codelineno-52-2" name="__codelineno-52-2" href="#__codelineno-52-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">coinChangeIIDP</span><span class="p">(</span><span class="nx">coins</span><span class="p">,</span><span class="w"> </span><span class="nx">amt</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-52-3" name="__codelineno-52-3" href="#__codelineno-52-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">coins</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-52-4" name="__codelineno-52-4" href="#__codelineno-52-4"></a><span class="w"> </span><span class="c1">// 初始化 dp 表</span>
|
||||||
|
<a id="__codelineno-52-5" name="__codelineno-52-5" href="#__codelineno-52-5"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=></span>
|
||||||
|
<a id="__codelineno-52-6" name="__codelineno-52-6" href="#__codelineno-52-6"></a><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="nx">amt</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=></span><span class="w"> </span><span class="mf">0</span><span class="p">)</span>
|
||||||
|
<a id="__codelineno-52-7" name="__codelineno-52-7" href="#__codelineno-52-7"></a><span class="w"> </span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-52-8" name="__codelineno-52-8" href="#__codelineno-52-8"></a><span class="w"> </span><span class="c1">// 初始化首列</span>
|
||||||
|
<a id="__codelineno-52-9" name="__codelineno-52-9" href="#__codelineno-52-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-52-10" name="__codelineno-52-10" href="#__codelineno-52-10"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="mf">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-52-11" name="__codelineno-52-11" href="#__codelineno-52-11"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-52-12" name="__codelineno-52-12" href="#__codelineno-52-12"></a><span class="w"> </span><span class="c1">// 状态转移</span>
|
||||||
|
<a id="__codelineno-52-13" name="__codelineno-52-13" href="#__codelineno-52-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-52-14" name="__codelineno-52-14" href="#__codelineno-52-14"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">amt</span><span class="p">;</span><span class="w"> </span><span class="nx">a</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-52-15" name="__codelineno-52-15" href="#__codelineno-52-15"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">coins</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="nx">a</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-52-16" name="__codelineno-52-16" href="#__codelineno-52-16"></a><span class="w"> </span><span class="c1">// 若超过背包容量,则不选硬币 i</span>
|
||||||
|
<a id="__codelineno-52-17" name="__codelineno-52-17" href="#__codelineno-52-17"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">a</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="nx">a</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-52-18" name="__codelineno-52-18" href="#__codelineno-52-18"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-52-19" name="__codelineno-52-19" href="#__codelineno-52-19"></a><span class="w"> </span><span class="c1">// 不选和选硬币 i 这两种方案之和</span>
|
||||||
|
<a id="__codelineno-52-20" name="__codelineno-52-20" href="#__codelineno-52-20"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">a</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="nx">a</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">a</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">coins</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]];</span>
|
||||||
|
<a id="__codelineno-52-21" name="__codelineno-52-21" href="#__codelineno-52-21"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-52-22" name="__codelineno-52-22" href="#__codelineno-52-22"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-52-23" name="__codelineno-52-23" href="#__codelineno-52-23"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-52-24" name="__codelineno-52-24" href="#__codelineno-52-24"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">][</span><span class="nx">amt</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-52-25" name="__codelineno-52-25" href="#__codelineno-52-25"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">coin_change_ii.ts</span><pre><span></span><code><a id="__codelineno-53-1" name="__codelineno-53-1" href="#__codelineno-53-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">coinChangeIIDP</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">coin_change_ii.ts</span><pre><span></span><code><a id="__codelineno-53-1" name="__codelineno-53-1" href="#__codelineno-53-1"></a><span class="cm">/* 零钱兑换 II:动态规划 */</span>
|
||||||
|
<a id="__codelineno-53-2" name="__codelineno-53-2" href="#__codelineno-53-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">coinChangeIIDP</span><span class="p">(</span><span class="nx">coins</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o"><</span><span class="kt">number</span><span class="o">></span><span class="p">,</span><span class="w"> </span><span class="nx">amt</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-53-3" name="__codelineno-53-3" href="#__codelineno-53-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">coins</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-53-4" name="__codelineno-53-4" href="#__codelineno-53-4"></a><span class="w"> </span><span class="c1">// 初始化 dp 表</span>
|
||||||
|
<a id="__codelineno-53-5" name="__codelineno-53-5" href="#__codelineno-53-5"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="kt">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=></span>
|
||||||
|
<a id="__codelineno-53-6" name="__codelineno-53-6" href="#__codelineno-53-6"></a><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="kt">amt</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=></span><span class="w"> </span><span class="mf">0</span><span class="p">)</span>
|
||||||
|
<a id="__codelineno-53-7" name="__codelineno-53-7" href="#__codelineno-53-7"></a><span class="w"> </span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-53-8" name="__codelineno-53-8" href="#__codelineno-53-8"></a><span class="w"> </span><span class="c1">// 初始化首列</span>
|
||||||
|
<a id="__codelineno-53-9" name="__codelineno-53-9" href="#__codelineno-53-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-53-10" name="__codelineno-53-10" href="#__codelineno-53-10"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="mf">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-53-11" name="__codelineno-53-11" href="#__codelineno-53-11"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-53-12" name="__codelineno-53-12" href="#__codelineno-53-12"></a><span class="w"> </span><span class="c1">// 状态转移</span>
|
||||||
|
<a id="__codelineno-53-13" name="__codelineno-53-13" href="#__codelineno-53-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-53-14" name="__codelineno-53-14" href="#__codelineno-53-14"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">amt</span><span class="p">;</span><span class="w"> </span><span class="nx">a</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-53-15" name="__codelineno-53-15" href="#__codelineno-53-15"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">coins</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="nx">a</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-53-16" name="__codelineno-53-16" href="#__codelineno-53-16"></a><span class="w"> </span><span class="c1">// 若超过背包容量,则不选硬币 i</span>
|
||||||
|
<a id="__codelineno-53-17" name="__codelineno-53-17" href="#__codelineno-53-17"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">a</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="nx">a</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-53-18" name="__codelineno-53-18" href="#__codelineno-53-18"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-53-19" name="__codelineno-53-19" href="#__codelineno-53-19"></a><span class="w"> </span><span class="c1">// 不选和选硬币 i 这两种方案之和</span>
|
||||||
|
<a id="__codelineno-53-20" name="__codelineno-53-20" href="#__codelineno-53-20"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">a</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="nx">a</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="nx">a</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">coins</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]];</span>
|
||||||
|
<a id="__codelineno-53-21" name="__codelineno-53-21" href="#__codelineno-53-21"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-53-22" name="__codelineno-53-22" href="#__codelineno-53-22"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-53-23" name="__codelineno-53-23" href="#__codelineno-53-23"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-53-24" name="__codelineno-53-24" href="#__codelineno-53-24"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">][</span><span class="nx">amt</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-53-25" name="__codelineno-53-25" href="#__codelineno-53-25"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
@ -5059,11 +5287,49 @@ dp[i, a] = dp[i-1, a] + dp[i, a - coins[i-1]]
|
|||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">coin_change_ii.js</span><pre><span></span><code><a id="__codelineno-64-1" name="__codelineno-64-1" href="#__codelineno-64-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">coinChangeIIDPComp</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">coin_change_ii.js</span><pre><span></span><code><a id="__codelineno-64-1" name="__codelineno-64-1" href="#__codelineno-64-1"></a><span class="cm">/* 零钱兑换 II:状态压缩后的动态规划 */</span>
|
||||||
|
<a id="__codelineno-64-2" name="__codelineno-64-2" href="#__codelineno-64-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">coinChangeIIDPComp</span><span class="p">(</span><span class="nx">coins</span><span class="p">,</span><span class="w"> </span><span class="nx">amt</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-64-3" name="__codelineno-64-3" href="#__codelineno-64-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">coins</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-64-4" name="__codelineno-64-4" href="#__codelineno-64-4"></a><span class="w"> </span><span class="c1">// 初始化 dp 表</span>
|
||||||
|
<a id="__codelineno-64-5" name="__codelineno-64-5" href="#__codelineno-64-5"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="nx">amt</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=></span><span class="w"> </span><span class="mf">0</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-64-6" name="__codelineno-64-6" href="#__codelineno-64-6"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-64-7" name="__codelineno-64-7" href="#__codelineno-64-7"></a><span class="w"> </span><span class="c1">// 状态转移</span>
|
||||||
|
<a id="__codelineno-64-8" name="__codelineno-64-8" href="#__codelineno-64-8"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-64-9" name="__codelineno-64-9" href="#__codelineno-64-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">amt</span><span class="p">;</span><span class="w"> </span><span class="nx">a</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-64-10" name="__codelineno-64-10" href="#__codelineno-64-10"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">coins</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="nx">a</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-64-11" name="__codelineno-64-11" href="#__codelineno-64-11"></a><span class="w"> </span><span class="c1">// 若超过背包容量,则不选硬币 i</span>
|
||||||
|
<a id="__codelineno-64-12" name="__codelineno-64-12" href="#__codelineno-64-12"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">a</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">a</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-64-13" name="__codelineno-64-13" href="#__codelineno-64-13"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-64-14" name="__codelineno-64-14" href="#__codelineno-64-14"></a><span class="w"> </span><span class="c1">// 不选和选硬币 i 这两种方案之和</span>
|
||||||
|
<a id="__codelineno-64-15" name="__codelineno-64-15" href="#__codelineno-64-15"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">a</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">a</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">a</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">coins</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]];</span>
|
||||||
|
<a id="__codelineno-64-16" name="__codelineno-64-16" href="#__codelineno-64-16"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-64-17" name="__codelineno-64-17" href="#__codelineno-64-17"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-64-18" name="__codelineno-64-18" href="#__codelineno-64-18"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-64-19" name="__codelineno-64-19" href="#__codelineno-64-19"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">amt</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-64-20" name="__codelineno-64-20" href="#__codelineno-64-20"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
<div class="highlight"><span class="filename">coin_change_ii.ts</span><pre><span></span><code><a id="__codelineno-65-1" name="__codelineno-65-1" href="#__codelineno-65-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">coinChangeIIDPComp</span><span class="p">}</span>
|
<div class="highlight"><span class="filename">coin_change_ii.ts</span><pre><span></span><code><a id="__codelineno-65-1" name="__codelineno-65-1" href="#__codelineno-65-1"></a><span class="cm">/* 零钱兑换 II:状态压缩后的动态规划 */</span>
|
||||||
|
<a id="__codelineno-65-2" name="__codelineno-65-2" href="#__codelineno-65-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">coinChangeIIDPComp</span><span class="p">(</span><span class="nx">coins</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o"><</span><span class="kt">number</span><span class="o">></span><span class="p">,</span><span class="w"> </span><span class="nx">amt</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-65-3" name="__codelineno-65-3" href="#__codelineno-65-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">coins</span><span class="p">.</span><span class="nx">length</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-65-4" name="__codelineno-65-4" href="#__codelineno-65-4"></a><span class="w"> </span><span class="c1">// 初始化 dp 表</span>
|
||||||
|
<a id="__codelineno-65-5" name="__codelineno-65-5" href="#__codelineno-65-5"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">({</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="kt">amt</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="p">},</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=></span><span class="w"> </span><span class="mf">0</span><span class="p">);</span>
|
||||||
|
<a id="__codelineno-65-6" name="__codelineno-65-6" href="#__codelineno-65-6"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">0</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
|
||||||
|
<a id="__codelineno-65-7" name="__codelineno-65-7" href="#__codelineno-65-7"></a><span class="w"> </span><span class="c1">// 状态转移</span>
|
||||||
|
<a id="__codelineno-65-8" name="__codelineno-65-8" href="#__codelineno-65-8"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-65-9" name="__codelineno-65-9" href="#__codelineno-65-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o"><=</span><span class="w"> </span><span class="nx">amt</span><span class="p">;</span><span class="w"> </span><span class="nx">a</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-65-10" name="__codelineno-65-10" href="#__codelineno-65-10"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">coins</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">></span><span class="w"> </span><span class="nx">a</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-65-11" name="__codelineno-65-11" href="#__codelineno-65-11"></a><span class="w"> </span><span class="c1">// 若超过背包容量,则不选硬币 i</span>
|
||||||
|
<a id="__codelineno-65-12" name="__codelineno-65-12" href="#__codelineno-65-12"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">a</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">a</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-65-13" name="__codelineno-65-13" href="#__codelineno-65-13"></a><span class="w"> </span><span class="p">}</span><span class="w"> </span><span class="k">else</span><span class="w"> </span><span class="p">{</span>
|
||||||
|
<a id="__codelineno-65-14" name="__codelineno-65-14" href="#__codelineno-65-14"></a><span class="w"> </span><span class="c1">// 不选和选硬币 i 这两种方案之和</span>
|
||||||
|
<a id="__codelineno-65-15" name="__codelineno-65-15" href="#__codelineno-65-15"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">a</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">a</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">a</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="nx">coins</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">]];</span>
|
||||||
|
<a id="__codelineno-65-16" name="__codelineno-65-16" href="#__codelineno-65-16"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-65-17" name="__codelineno-65-17" href="#__codelineno-65-17"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-65-18" name="__codelineno-65-18" href="#__codelineno-65-18"></a><span class="w"> </span><span class="p">}</span>
|
||||||
|
<a id="__codelineno-65-19" name="__codelineno-65-19" href="#__codelineno-65-19"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">amt</span><span class="p">];</span>
|
||||||
|
<a id="__codelineno-65-20" name="__codelineno-65-20" href="#__codelineno-65-20"></a><span class="p">}</span>
|
||||||
</code></pre></div>
|
</code></pre></div>
|
||||||
</div>
|
</div>
|
||||||
<div class="tabbed-block">
|
<div class="tabbed-block">
|
||||||
|
@ -3453,7 +3453,7 @@
|
|||||||
<p>如图 10-2 所示,我们先初始化指针 <span class="arithmatex">\(i = 0\)</span> 和 <span class="arithmatex">\(j = n - 1\)</span> ,分别指向数组首元素和尾元素,代表搜索区间 <span class="arithmatex">\([0, n - 1]\)</span> 。请注意,中括号表示闭区间,其包含边界值本身。</p>
|
<p>如图 10-2 所示,我们先初始化指针 <span class="arithmatex">\(i = 0\)</span> 和 <span class="arithmatex">\(j = n - 1\)</span> ,分别指向数组首元素和尾元素,代表搜索区间 <span class="arithmatex">\([0, n - 1]\)</span> 。请注意,中括号表示闭区间,其包含边界值本身。</p>
|
||||||
<p>接下来,循环执行以下两步。</p>
|
<p>接下来,循环执行以下两步。</p>
|
||||||
<ol>
|
<ol>
|
||||||
<li>计算中点索引 <span class="arithmatex">\(m = \lfloor {(i + j) / 2} \rfloor\)</span> ,其中 <span class="arithmatex">\(\lfloor \space \rfloor\)</span> 表示向下取整操作。</li>
|
<li>计算中点索引 <span class="arithmatex">\(m = \lfloor {(i + j) / 2} \rfloor\)</span> ,其中 <span class="arithmatex">\(\lfloor \: \rfloor\)</span> 表示向下取整操作。</li>
|
||||||
<li>判断 <code>nums[m]</code> 和 <code>target</code> 的大小关系,分为以下三种情况。<ol>
|
<li>判断 <code>nums[m]</code> 和 <code>target</code> 的大小关系,分为以下三种情况。<ol>
|
||||||
<li>当 <code>nums[m] < target</code> 时,说明 <code>target</code> 在区间 <span class="arithmatex">\([m + 1, j]\)</span> 中,因此执行 <span class="arithmatex">\(i = m + 1\)</span> 。</li>
|
<li>当 <code>nums[m] < target</code> 时,说明 <code>target</code> 在区间 <span class="arithmatex">\([m + 1, j]\)</span> 中,因此执行 <span class="arithmatex">\(i = m + 1\)</span> 。</li>
|
||||||
<li>当 <code>nums[m] > target</code> 时,说明 <code>target</code> 在区间 <span class="arithmatex">\([i, m - 1]\)</span> 中,因此执行 <span class="arithmatex">\(j = m - 1\)</span> 。</li>
|
<li>当 <code>nums[m] > target</code> 时,说明 <code>target</code> 在区间 <span class="arithmatex">\([i, m - 1]\)</span> 中,因此执行 <span class="arithmatex">\(j = m - 1\)</span> 。</li>
|
||||||
|
@ -3458,7 +3458,7 @@
|
|||||||
<div class="arithmatex">\[
|
<div class="arithmatex">\[
|
||||||
x_k = \lfloor\frac{x}{d^{k-1}}\rfloor \bmod d
|
x_k = \lfloor\frac{x}{d^{k-1}}\rfloor \bmod d
|
||||||
\]</div>
|
\]</div>
|
||||||
<p>其中 <span class="arithmatex">\(\lfloor a \rfloor\)</span> 表示对浮点数 <span class="arithmatex">\(a\)</span> 向下取整,而 <span class="arithmatex">\(\bmod \space d\)</span> 表示对 <span class="arithmatex">\(d\)</span> 取余。对于学号数据,<span class="arithmatex">\(d = 10\)</span> 且 <span class="arithmatex">\(k \in [1, 8]\)</span> 。</p>
|
<p>其中 <span class="arithmatex">\(\lfloor a \rfloor\)</span> 表示对浮点数 <span class="arithmatex">\(a\)</span> 向下取整,而 <span class="arithmatex">\(\bmod \: d\)</span> 表示对 <span class="arithmatex">\(d\)</span> 取余。对于学号数据,<span class="arithmatex">\(d = 10\)</span> 且 <span class="arithmatex">\(k \in [1, 8]\)</span> 。</p>
|
||||||
<p>此外,我们需要小幅改动计数排序代码,使之可以根据数字的第 <span class="arithmatex">\(k\)</span> 位进行排序。</p>
|
<p>此外,我们需要小幅改动计数排序代码,使之可以根据数字的第 <span class="arithmatex">\(k\)</span> 位进行排序。</p>
|
||||||
<div class="tabbed-set tabbed-alternate" data-tabs="1:12"><input checked="checked" id="__tabbed_1_1" name="__tabbed_1" type="radio" /><input id="__tabbed_1_2" name="__tabbed_1" type="radio" /><input id="__tabbed_1_3" name="__tabbed_1" type="radio" /><input id="__tabbed_1_4" name="__tabbed_1" type="radio" /><input id="__tabbed_1_5" name="__tabbed_1" type="radio" /><input id="__tabbed_1_6" name="__tabbed_1" type="radio" /><input id="__tabbed_1_7" name="__tabbed_1" type="radio" /><input id="__tabbed_1_8" name="__tabbed_1" type="radio" /><input id="__tabbed_1_9" name="__tabbed_1" type="radio" /><input id="__tabbed_1_10" name="__tabbed_1" type="radio" /><input id="__tabbed_1_11" name="__tabbed_1" type="radio" /><input id="__tabbed_1_12" name="__tabbed_1" type="radio" /><div class="tabbed-labels"><label for="__tabbed_1_1">Java</label><label for="__tabbed_1_2">C++</label><label for="__tabbed_1_3">Python</label><label for="__tabbed_1_4">Go</label><label for="__tabbed_1_5">JS</label><label for="__tabbed_1_6">TS</label><label for="__tabbed_1_7">C</label><label for="__tabbed_1_8">C#</label><label for="__tabbed_1_9">Swift</label><label for="__tabbed_1_10">Zig</label><label for="__tabbed_1_11">Dart</label><label for="__tabbed_1_12">Rust</label></div>
|
<div class="tabbed-set tabbed-alternate" data-tabs="1:12"><input checked="checked" id="__tabbed_1_1" name="__tabbed_1" type="radio" /><input id="__tabbed_1_2" name="__tabbed_1" type="radio" /><input id="__tabbed_1_3" name="__tabbed_1" type="radio" /><input id="__tabbed_1_4" name="__tabbed_1" type="radio" /><input id="__tabbed_1_5" name="__tabbed_1" type="radio" /><input id="__tabbed_1_6" name="__tabbed_1" type="radio" /><input id="__tabbed_1_7" name="__tabbed_1" type="radio" /><input id="__tabbed_1_8" name="__tabbed_1" type="radio" /><input id="__tabbed_1_9" name="__tabbed_1" type="radio" /><input id="__tabbed_1_10" name="__tabbed_1" type="radio" /><input id="__tabbed_1_11" name="__tabbed_1" type="radio" /><input id="__tabbed_1_12" name="__tabbed_1" type="radio" /><div class="tabbed-labels"><label for="__tabbed_1_1">Java</label><label for="__tabbed_1_2">C++</label><label for="__tabbed_1_3">Python</label><label for="__tabbed_1_4">Go</label><label for="__tabbed_1_5">JS</label><label for="__tabbed_1_6">TS</label><label for="__tabbed_1_7">C</label><label for="__tabbed_1_8">C#</label><label for="__tabbed_1_9">Swift</label><label for="__tabbed_1_10">Zig</label><label for="__tabbed_1_11">Dart</label><label for="__tabbed_1_12">Rust</label></div>
|
||||||
<div class="tabbed-content">
|
<div class="tabbed-content">
|
||||||
|
File diff suppressed because one or more lines are too long
BIN
sitemap.xml.gz
BIN
sitemap.xml.gz
Binary file not shown.
Reference in New Issue
Block a user