This commit is contained in:
krahets
2023-08-30 15:28:58 +08:00
parent 304d896e7d
commit 8bcedd5c68
11 changed files with 878 additions and 59 deletions

View File

@ -3552,11 +3552,43 @@ dp[i] = \min(dp[i-1], dp[i-2]) + cost[i]
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.js</span><pre><span></span><code><a id="__codelineno-4-1" name="__codelineno-4-1" href="#__codelineno-4-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">minCostClimbingStairsDP</span><span class="p">}</span>
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.js</span><pre><span></span><code><a id="__codelineno-4-1" name="__codelineno-4-1" href="#__codelineno-4-1"></a><span class="cm">/* 爬楼梯最小代价:动态规划 */</span>
<a id="__codelineno-4-2" name="__codelineno-4-2" href="#__codelineno-4-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">minCostClimbingStairsDP</span><span class="p">(</span><span class="nx">cost</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-3" name="__codelineno-4-3" href="#__codelineno-4-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">.</span><span class="nx">length</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-4-4" name="__codelineno-4-4" href="#__codelineno-4-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-5" name="__codelineno-4-5" href="#__codelineno-4-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="nx">n</span><span class="p">];</span>
<a id="__codelineno-4-6" name="__codelineno-4-6" href="#__codelineno-4-6"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-4-7" name="__codelineno-4-7" href="#__codelineno-4-7"></a><span class="w"> </span><span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
<a id="__codelineno-4-8" name="__codelineno-4-8" href="#__codelineno-4-8"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="ow">new</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">);</span>
<a id="__codelineno-4-9" name="__codelineno-4-9" href="#__codelineno-4-9"></a><span class="w"> </span><span class="c1">// 初始状态:预设最小子问题的解</span>
<a id="__codelineno-4-10" name="__codelineno-4-10" href="#__codelineno-4-10"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="mf">1</span><span class="p">];</span>
<a id="__codelineno-4-11" name="__codelineno-4-11" href="#__codelineno-4-11"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="mf">2</span><span class="p">];</span>
<a id="__codelineno-4-12" name="__codelineno-4-12" href="#__codelineno-4-12"></a><span class="w"> </span><span class="c1">// 状态转移:从较小子问题逐步求解较大子问题</span>
<a id="__codelineno-4-13" name="__codelineno-4-13" href="#__codelineno-4-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">3</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-4-14" name="__codelineno-4-14" href="#__codelineno-4-14"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">min</span><span class="p">(</span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">],</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">2</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="nx">i</span><span class="p">];</span>
<a id="__codelineno-4-15" name="__codelineno-4-15" href="#__codelineno-4-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-4-16" name="__codelineno-4-16" href="#__codelineno-4-16"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">];</span>
<a id="__codelineno-4-17" name="__codelineno-4-17" href="#__codelineno-4-17"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.ts</span><pre><span></span><code><a id="__codelineno-5-1" name="__codelineno-5-1" href="#__codelineno-5-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">minCostClimbingStairsDP</span><span class="p">}</span>
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.ts</span><pre><span></span><code><a id="__codelineno-5-1" name="__codelineno-5-1" href="#__codelineno-5-1"></a><span class="cm">/* 爬楼梯最小代价:动态规划 */</span>
<a id="__codelineno-5-2" name="__codelineno-5-2" href="#__codelineno-5-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">minCostClimbingStairsDP</span><span class="p">(</span><span class="nx">cost</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o">&lt;</span><span class="kt">number</span><span class="o">&gt;</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-5-3" name="__codelineno-5-3" href="#__codelineno-5-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">.</span><span class="nx">length</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-5-4" name="__codelineno-5-4" href="#__codelineno-5-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-5-5" name="__codelineno-5-5" href="#__codelineno-5-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="nx">n</span><span class="p">];</span>
<a id="__codelineno-5-6" name="__codelineno-5-6" href="#__codelineno-5-6"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-5-7" name="__codelineno-5-7" href="#__codelineno-5-7"></a><span class="w"> </span><span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
<a id="__codelineno-5-8" name="__codelineno-5-8" href="#__codelineno-5-8"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="ow">new</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">);</span>
<a id="__codelineno-5-9" name="__codelineno-5-9" href="#__codelineno-5-9"></a><span class="w"> </span><span class="c1">// 初始状态:预设最小子问题的解</span>
<a id="__codelineno-5-10" name="__codelineno-5-10" href="#__codelineno-5-10"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="mf">1</span><span class="p">];</span>
<a id="__codelineno-5-11" name="__codelineno-5-11" href="#__codelineno-5-11"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="mf">2</span><span class="p">];</span>
<a id="__codelineno-5-12" name="__codelineno-5-12" href="#__codelineno-5-12"></a><span class="w"> </span><span class="c1">// 状态转移:从较小子问题逐步求解较大子问题</span>
<a id="__codelineno-5-13" name="__codelineno-5-13" href="#__codelineno-5-13"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">3</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-5-14" name="__codelineno-5-14" href="#__codelineno-5-14"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">min</span><span class="p">(</span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">],</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">2</span><span class="p">])</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="nx">i</span><span class="p">];</span>
<a id="__codelineno-5-15" name="__codelineno-5-15" href="#__codelineno-5-15"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-5-16" name="__codelineno-5-16" href="#__codelineno-5-16"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">];</span>
<a id="__codelineno-5-17" name="__codelineno-5-17" href="#__codelineno-5-17"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
@ -3731,11 +3763,39 @@ dp[i] = \min(dp[i-1], dp[i-2]) + cost[i]
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.js</span><pre><span></span><code><a id="__codelineno-16-1" name="__codelineno-16-1" href="#__codelineno-16-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">minCostClimbingStairsDPComp</span><span class="p">}</span>
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.js</span><pre><span></span><code><a id="__codelineno-16-1" name="__codelineno-16-1" href="#__codelineno-16-1"></a><span class="cm">/* 爬楼梯最小代价:状态压缩后的动态规划 */</span>
<a id="__codelineno-16-2" name="__codelineno-16-2" href="#__codelineno-16-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">minCostClimbingStairsDPComp</span><span class="p">(</span><span class="nx">cost</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-16-3" name="__codelineno-16-3" href="#__codelineno-16-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">.</span><span class="nx">length</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-16-4" name="__codelineno-16-4" href="#__codelineno-16-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-16-5" name="__codelineno-16-5" href="#__codelineno-16-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="nx">n</span><span class="p">];</span>
<a id="__codelineno-16-6" name="__codelineno-16-6" href="#__codelineno-16-6"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-16-7" name="__codelineno-16-7" href="#__codelineno-16-7"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="mf">1</span><span class="p">],</span>
<a id="__codelineno-16-8" name="__codelineno-16-8" href="#__codelineno-16-8"></a><span class="w"> </span><span class="nx">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="mf">2</span><span class="p">];</span>
<a id="__codelineno-16-9" name="__codelineno-16-9" href="#__codelineno-16-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">3</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-16-10" name="__codelineno-16-10" href="#__codelineno-16-10"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">b</span><span class="p">;</span>
<a id="__codelineno-16-11" name="__codelineno-16-11" href="#__codelineno-16-11"></a><span class="w"> </span><span class="nx">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">min</span><span class="p">(</span><span class="nx">a</span><span class="p">,</span><span class="w"> </span><span class="nx">tmp</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="nx">i</span><span class="p">];</span>
<a id="__codelineno-16-12" name="__codelineno-16-12" href="#__codelineno-16-12"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">tmp</span><span class="p">;</span>
<a id="__codelineno-16-13" name="__codelineno-16-13" href="#__codelineno-16-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-16-14" name="__codelineno-16-14" href="#__codelineno-16-14"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">b</span><span class="p">;</span>
<a id="__codelineno-16-15" name="__codelineno-16-15" href="#__codelineno-16-15"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.ts</span><pre><span></span><code><a id="__codelineno-17-1" name="__codelineno-17-1" href="#__codelineno-17-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">minCostClimbingStairsDPComp</span><span class="p">}</span>
<div class="highlight"><span class="filename">min_cost_climbing_stairs_dp.ts</span><pre><span></span><code><a id="__codelineno-17-1" name="__codelineno-17-1" href="#__codelineno-17-1"></a><span class="cm">/* 爬楼梯最小代价:状态压缩后的动态规划 */</span>
<a id="__codelineno-17-2" name="__codelineno-17-2" href="#__codelineno-17-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">minCostClimbingStairsDPComp</span><span class="p">(</span><span class="nx">cost</span><span class="o">:</span><span class="w"> </span><span class="kt">Array</span><span class="o">&lt;</span><span class="kt">number</span><span class="o">&gt;</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-17-3" name="__codelineno-17-3" href="#__codelineno-17-3"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">.</span><span class="nx">length</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-17-4" name="__codelineno-17-4" href="#__codelineno-17-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-17-5" name="__codelineno-17-5" href="#__codelineno-17-5"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="nx">n</span><span class="p">];</span>
<a id="__codelineno-17-6" name="__codelineno-17-6" href="#__codelineno-17-6"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-17-7" name="__codelineno-17-7" href="#__codelineno-17-7"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="mf">1</span><span class="p">],</span>
<a id="__codelineno-17-8" name="__codelineno-17-8" href="#__codelineno-17-8"></a><span class="w"> </span><span class="nx">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="mf">2</span><span class="p">];</span>
<a id="__codelineno-17-9" name="__codelineno-17-9" href="#__codelineno-17-9"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">3</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-17-10" name="__codelineno-17-10" href="#__codelineno-17-10"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">tmp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">b</span><span class="p">;</span>
<a id="__codelineno-17-11" name="__codelineno-17-11" href="#__codelineno-17-11"></a><span class="w"> </span><span class="nx">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Math</span><span class="p">.</span><span class="nx">min</span><span class="p">(</span><span class="nx">a</span><span class="p">,</span><span class="w"> </span><span class="nx">tmp</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">cost</span><span class="p">[</span><span class="nx">i</span><span class="p">];</span>
<a id="__codelineno-17-12" name="__codelineno-17-12" href="#__codelineno-17-12"></a><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">tmp</span><span class="p">;</span>
<a id="__codelineno-17-13" name="__codelineno-17-13" href="#__codelineno-17-13"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-17-14" name="__codelineno-17-14" href="#__codelineno-17-14"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">b</span><span class="p">;</span>
<a id="__codelineno-17-15" name="__codelineno-17-15" href="#__codelineno-17-15"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
@ -3940,11 +4000,50 @@ dp[i, 2] = dp[i-2, 1] + dp[i-2, 2]
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_constraint_dp.js</span><pre><span></span><code><a id="__codelineno-28-1" name="__codelineno-28-1" href="#__codelineno-28-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">climbingStairsConstraintDP</span><span class="p">}</span>
<div class="highlight"><span class="filename">climbing_stairs_constraint_dp.js</span><pre><span></span><code><a id="__codelineno-28-1" name="__codelineno-28-1" href="#__codelineno-28-1"></a><span class="cm">/* 带约束爬楼梯:动态规划 */</span>
<a id="__codelineno-28-2" name="__codelineno-28-2" href="#__codelineno-28-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">climbingStairsConstraintDP</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-28-3" name="__codelineno-28-3" href="#__codelineno-28-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-28-4" name="__codelineno-28-4" href="#__codelineno-28-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span>
<a id="__codelineno-28-5" name="__codelineno-28-5" href="#__codelineno-28-5"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-28-6" name="__codelineno-28-6" href="#__codelineno-28-6"></a><span class="w"> </span><span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
<a id="__codelineno-28-7" name="__codelineno-28-7" href="#__codelineno-28-7"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">(</span><span class="ow">new</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">),</span><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=&gt;</span><span class="w"> </span><span class="ow">new</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="mf">3</span><span class="p">));</span>
<a id="__codelineno-28-8" name="__codelineno-28-8" href="#__codelineno-28-8"></a><span class="w"> </span><span class="c1">// 初始状态:预设最小子问题的解</span>
<a id="__codelineno-28-9" name="__codelineno-28-9" href="#__codelineno-28-9"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">1</span><span class="p">][</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-28-10" name="__codelineno-28-10" href="#__codelineno-28-10"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">1</span><span class="p">][</span><span class="mf">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-28-11" name="__codelineno-28-11" href="#__codelineno-28-11"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">2</span><span class="p">][</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-28-12" name="__codelineno-28-12" href="#__codelineno-28-12"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">2</span><span class="p">][</span><span class="mf">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-28-13" name="__codelineno-28-13" href="#__codelineno-28-13"></a><span class="w"> </span><span class="c1">// 状态转移:从较小子问题逐步求解较大子问题</span>
<a id="__codelineno-28-14" name="__codelineno-28-14" href="#__codelineno-28-14"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">3</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-28-15" name="__codelineno-28-15" href="#__codelineno-28-15"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="mf">2</span><span class="p">];</span>
<a id="__codelineno-28-16" name="__codelineno-28-16" href="#__codelineno-28-16"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="mf">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">2</span><span class="p">][</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">2</span><span class="p">][</span><span class="mf">2</span><span class="p">];</span>
<a id="__codelineno-28-17" name="__codelineno-28-17" href="#__codelineno-28-17"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-28-18" name="__codelineno-28-18" href="#__codelineno-28-18"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">][</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">][</span><span class="mf">2</span><span class="p">];</span>
<a id="__codelineno-28-19" name="__codelineno-28-19" href="#__codelineno-28-19"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_constraint_dp.ts</span><pre><span></span><code><a id="__codelineno-29-1" name="__codelineno-29-1" href="#__codelineno-29-1"></a><span class="p">[</span><span class="kd">class</span><span class="p">]{}</span><span class="o">-</span><span class="p">[</span><span class="nx">func</span><span class="p">]{</span><span class="nx">climbingStairsConstraintDP</span><span class="p">}</span>
<div class="highlight"><span class="filename">climbing_stairs_constraint_dp.ts</span><pre><span></span><code><a id="__codelineno-29-1" name="__codelineno-29-1" href="#__codelineno-29-1"></a><span class="cm">/* 带约束爬楼梯:动态规划 */</span>
<a id="__codelineno-29-2" name="__codelineno-29-2" href="#__codelineno-29-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">climbingStairsConstraintDP</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-29-3" name="__codelineno-29-3" href="#__codelineno-29-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-29-4" name="__codelineno-29-4" href="#__codelineno-29-4"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span>
<a id="__codelineno-29-5" name="__codelineno-29-5" href="#__codelineno-29-5"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-29-6" name="__codelineno-29-6" href="#__codelineno-29-6"></a><span class="w"> </span><span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
<a id="__codelineno-29-7" name="__codelineno-29-7" href="#__codelineno-29-7"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nb">Array</span><span class="p">.</span><span class="kr">from</span><span class="p">(</span>
<a id="__codelineno-29-8" name="__codelineno-29-8" href="#__codelineno-29-8"></a><span class="w"> </span><span class="p">{</span><span class="w"> </span><span class="nx">length</span><span class="o">:</span><span class="w"> </span><span class="kt">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="p">},</span>
<a id="__codelineno-29-9" name="__codelineno-29-9" href="#__codelineno-29-9"></a><span class="w"> </span><span class="p">()</span><span class="w"> </span><span class="p">=&gt;</span><span class="w"> </span><span class="ow">new</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="mf">3</span><span class="p">)</span>
<a id="__codelineno-29-10" name="__codelineno-29-10" href="#__codelineno-29-10"></a><span class="w"> </span><span class="p">);</span>
<a id="__codelineno-29-11" name="__codelineno-29-11" href="#__codelineno-29-11"></a><span class="w"> </span><span class="c1">// 初始状态:预设最小子问题的解</span>
<a id="__codelineno-29-12" name="__codelineno-29-12" href="#__codelineno-29-12"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">1</span><span class="p">][</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-29-13" name="__codelineno-29-13" href="#__codelineno-29-13"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">1</span><span class="p">][</span><span class="mf">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-29-14" name="__codelineno-29-14" href="#__codelineno-29-14"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">2</span><span class="p">][</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">0</span><span class="p">;</span>
<a id="__codelineno-29-15" name="__codelineno-29-15" href="#__codelineno-29-15"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="mf">2</span><span class="p">][</span><span class="mf">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">;</span>
<a id="__codelineno-29-16" name="__codelineno-29-16" href="#__codelineno-29-16"></a><span class="w"> </span><span class="c1">// 状态转移:从较小子问题逐步求解较大子问题</span>
<a id="__codelineno-29-17" name="__codelineno-29-17" href="#__codelineno-29-17"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">3</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-29-18" name="__codelineno-29-18" href="#__codelineno-29-18"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">][</span><span class="mf">2</span><span class="p">];</span>
<a id="__codelineno-29-19" name="__codelineno-29-19" href="#__codelineno-29-19"></a><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="p">][</span><span class="mf">2</span><span class="p">]</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">2</span><span class="p">][</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">2</span><span class="p">][</span><span class="mf">2</span><span class="p">];</span>
<a id="__codelineno-29-20" name="__codelineno-29-20" href="#__codelineno-29-20"></a><span class="w"> </span><span class="p">}</span>
<a id="__codelineno-29-21" name="__codelineno-29-21" href="#__codelineno-29-21"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">][</span><span class="mf">1</span><span class="p">]</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">dp</span><span class="p">[</span><span class="nx">n</span><span class="p">][</span><span class="mf">2</span><span class="p">];</span>
<a id="__codelineno-29-22" name="__codelineno-29-22" href="#__codelineno-29-22"></a><span class="p">}</span>
</code></pre></div>
</div>
<div class="tabbed-block">