mirror of
https://github.com/krahets/hello-algo.git
synced 2025-07-15 04:38:30 +08:00
refactor: Follow the PEP 585 Typing standard (#439)
* Follow the PEP 585 Typing standard * Update list.py
This commit is contained in:
@ -4,11 +4,7 @@ Created Time: 2022-11-25
|
||||
Author: Krahets (krahets@163.com)
|
||||
"""
|
||||
|
||||
import sys, os.path as osp
|
||||
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
|
||||
from modules import *
|
||||
|
||||
def two_sum_brute_force(nums: List[int], target: int) -> List[int]:
|
||||
def two_sum_brute_force(nums: list[int], target: int) -> list[int]:
|
||||
""" 方法一:暴力枚举 """
|
||||
# 两层循环,时间复杂度 O(n^2)
|
||||
for i in range(len(nums) - 1):
|
||||
@ -17,7 +13,7 @@ def two_sum_brute_force(nums: List[int], target: int) -> List[int]:
|
||||
return [i, j]
|
||||
return []
|
||||
|
||||
def two_sum_hash_table(nums: List[int], target: int) -> List[int]:
|
||||
def two_sum_hash_table(nums: list[int], target: int) -> list[int]:
|
||||
""" 方法二:辅助哈希表 """
|
||||
# 辅助哈希表,空间复杂度 O(n)
|
||||
dic = {}
|
||||
@ -37,8 +33,8 @@ if __name__ == '__main__':
|
||||
|
||||
# ====== Driver Code ======
|
||||
# 方法一
|
||||
res: List[int] = two_sum_brute_force(nums, target)
|
||||
res: list[int] = two_sum_brute_force(nums, target)
|
||||
print("方法一 res =", res)
|
||||
# 方法二
|
||||
res: List[int] = two_sum_hash_table(nums, target)
|
||||
res: list[int] = two_sum_hash_table(nums, target)
|
||||
print("方法二 res =", res)
|
||||
|
@ -17,7 +17,7 @@ def constant(n: int) -> None:
|
||||
""" 常数阶 """
|
||||
# 常量、变量、对象占用 O(1) 空间
|
||||
a: int = 0
|
||||
nums: List[int] = [0] * 10000
|
||||
nums: list[int] = [0] * 10000
|
||||
node = ListNode(0)
|
||||
# 循环中的变量占用 O(1) 空间
|
||||
for _ in range(n):
|
||||
@ -29,9 +29,9 @@ def constant(n: int) -> None:
|
||||
def linear(n: int) -> None:
|
||||
""" 线性阶 """
|
||||
# 长度为 n 的列表占用 O(n) 空间
|
||||
nums: List[int] = [0] * n
|
||||
nums: list[int] = [0] * n
|
||||
# 长度为 n 的哈希表占用 O(n) 空间
|
||||
mapp: Dict = {}
|
||||
mapp = dict[int, str]()
|
||||
for i in range(n):
|
||||
mapp[i] = str(i)
|
||||
|
||||
@ -44,16 +44,16 @@ def linear_recur(n: int) -> None:
|
||||
def quadratic(n: int) -> None:
|
||||
""" 平方阶 """
|
||||
# 二维列表占用 O(n^2) 空间
|
||||
num_matrix: List[List[int]] = [[0] * n for _ in range(n)]
|
||||
num_matrix: list[list[int]] = [[0] * n for _ in range(n)]
|
||||
|
||||
def quadratic_recur(n: int) -> int:
|
||||
""" 平方阶(递归实现) """
|
||||
if n <= 0: return 0
|
||||
# 数组 nums 长度为 n, n-1, ..., 2, 1
|
||||
nums: List[int] = [0] * n
|
||||
nums: list[int] = [0] * n
|
||||
return quadratic_recur(n - 1)
|
||||
|
||||
def build_tree(n: int) -> Optional[TreeNode]:
|
||||
def build_tree(n: int) -> TreeNode | None:
|
||||
""" 指数阶(建立满二叉树) """
|
||||
if n == 0: return None
|
||||
root = TreeNode(0)
|
||||
@ -74,5 +74,5 @@ if __name__ == "__main__":
|
||||
quadratic(n)
|
||||
quadratic_recur(n)
|
||||
# 指数阶
|
||||
root: Optional[TreeNode] = build_tree(n)
|
||||
root = build_tree(n)
|
||||
print_tree(root)
|
||||
|
@ -4,10 +4,6 @@ Created Time: 2022-11-25
|
||||
Author: Krahets (krahets@163.com)
|
||||
"""
|
||||
|
||||
import sys, os.path as osp
|
||||
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
|
||||
from modules import *
|
||||
|
||||
def constant(n: int) -> int:
|
||||
""" 常数阶 """
|
||||
count: int = 0
|
||||
@ -23,7 +19,7 @@ def linear(n: int) -> int:
|
||||
count += 1
|
||||
return count
|
||||
|
||||
def array_traversal(nums: List[int]) -> int:
|
||||
def array_traversal(nums: list[int]) -> int:
|
||||
""" 线性阶(遍历数组)"""
|
||||
count: int = 0
|
||||
# 循环次数与数组长度成正比
|
||||
@ -40,7 +36,7 @@ def quadratic(n: int) -> int:
|
||||
count += 1
|
||||
return count
|
||||
|
||||
def bubble_sort(nums: List[int]) -> int:
|
||||
def bubble_sort(nums: list[int]) -> int:
|
||||
""" 平方阶(冒泡排序)"""
|
||||
count: int = 0 # 计数器
|
||||
# 外循环:待排序元素数量为 n-1, n-2, ..., 1
|
||||
@ -120,7 +116,7 @@ if __name__ == "__main__":
|
||||
|
||||
count: int = quadratic(n)
|
||||
print("平方阶的计算操作数量 =", count)
|
||||
nums: List[int] = [i for i in range(n, 0, -1)] # [n,n-1,...,2,1]
|
||||
nums: list[int] = [i for i in range(n, 0, -1)] # [n,n-1,...,2,1]
|
||||
count: int = bubble_sort(nums)
|
||||
print("平方阶(冒泡排序)的计算操作数量 =", count)
|
||||
|
||||
|
@ -4,19 +4,17 @@ Created Time: 2022-11-25
|
||||
Author: Krahets (krahets@163.com)
|
||||
"""
|
||||
|
||||
import sys, os.path as osp
|
||||
sys.path.append(osp.dirname(osp.dirname(osp.abspath(__file__))))
|
||||
from modules import *
|
||||
import random
|
||||
|
||||
def random_numbers(n: int) -> List[int]:
|
||||
def random_numbers(n: int) -> list[int]:
|
||||
""" 生成一个数组,元素为: 1, 2, ..., n ,顺序被打乱 """
|
||||
# 生成数组 nums =: 1, 2, 3, ..., n
|
||||
nums: List[int] = [i for i in range(1, n + 1)]
|
||||
nums: list[int] = [i for i in range(1, n + 1)]
|
||||
# 随机打乱数组元素
|
||||
random.shuffle(nums)
|
||||
return nums
|
||||
|
||||
def find_one(nums: List[int]) -> int:
|
||||
def find_one(nums: list[int]) -> int:
|
||||
""" 查找数组 nums 中数字 1 所在索引 """
|
||||
for i in range(len(nums)):
|
||||
# 当元素 1 在数组头部时,达到最佳时间复杂度 O(1)
|
||||
@ -30,7 +28,7 @@ def find_one(nums: List[int]) -> int:
|
||||
if __name__ == "__main__":
|
||||
for i in range(10):
|
||||
n: int = 100
|
||||
nums: List[int] = random_numbers(n)
|
||||
nums: list[int] = random_numbers(n)
|
||||
index: int = find_one(nums)
|
||||
print("\n数组 [ 1, 2, ..., n ] 被打乱后 =", nums)
|
||||
print("数字 1 的索引为", index)
|
||||
|
Reference in New Issue
Block a user