This commit is contained in:
krahets
2024-03-25 22:43:12 +08:00
parent 22017aa8e5
commit 87af663929
70 changed files with 7428 additions and 32 deletions

View File

@ -356,6 +356,39 @@ comments: true
}
```
=== "Kotlin"
```kotlin title="climbing_stairs_backtrack.kt"
/* 回溯 */
fun backtrack(
choices: List<Int>,
state: Int,
n: Int,
res: MutableList<Int>
) {
// 当爬到第 n 阶时,方案数量加 1
if (state == n) res[0] = res[0] + 1
// 遍历所有选择
for (choice in choices) {
// 剪枝:不允许越过第 n 阶
if (state + choice > n) continue
// 尝试:做出选择,更新状态
backtrack(choices, state + choice, n, res)
// 回退
}
}
/* 爬楼梯:回溯 */
fun climbingStairsBacktrack(n: Int): Int {
val choices = mutableListOf(1, 2) // 可选择向上爬 1 阶或 2 阶
val state = 0 // 从第 0 阶开始爬
val res = ArrayList<Int>()
res.add(0) // 使用 res[0] 记录方案数量
backtrack(choices, state, n, res)
return res[0]
}
```
=== "Zig"
```zig title="climbing_stairs_backtrack.zig"
@ -629,6 +662,24 @@ $$
}
```
=== "Kotlin"
```kotlin title="climbing_stairs_dfs.kt"
/* 搜索 */
fun dfs(i: Int): Int {
// 已知 dp[1] 和 dp[2] ,返回之
if (i == 1 || i == 2) return i
// dp[i] = dp[i-1] + dp[i-2]
val count = dfs(i - 1) + dfs(i - 2)
return count
}
/* 爬楼梯:搜索 */
fun climbingStairsDFS(n: Int): Int {
return dfs(n)
}
```
=== "Zig"
```zig title="climbing_stairs_dfs.zig"
@ -967,6 +1018,31 @@ $$
}
```
=== "Kotlin"
```kotlin title="climbing_stairs_dfs_mem.kt"
/* 记忆化搜索 */
fun dfs(i: Int, mem: IntArray): Int {
// 已知 dp[1] 和 dp[2] ,返回之
if (i == 1 || i == 2) return i
// 若存在记录 dp[i] ,则直接返回之
if (mem[i] != -1) return mem[i]
// dp[i] = dp[i-1] + dp[i-2]
val count = dfs(i - 1, mem) + dfs(i - 2, mem)
// 记录 dp[i]
mem[i] = count
return count
}
/* 爬楼梯:记忆化搜索 */
fun climbingStairsDFSMem(n: Int): Int {
// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
val mem = IntArray(n + 1)
Arrays.fill(mem, -1)
return dfs(n, mem)
}
```
=== "Zig"
```zig title="climbing_stairs_dfs_mem.zig"
@ -1234,6 +1310,25 @@ $$
}
```
=== "Kotlin"
```kotlin title="climbing_stairs_dp.kt"
/* 爬楼梯:动态规划 */
fun climbingStairsDP(n: Int): Int {
if (n == 1 || n == 2) return n
// 初始化 dp 表,用于存储子问题的解
val dp = IntArray(n + 1)
// 初始状态:预设最小子问题的解
dp[1] = 1
dp[2] = 2
// 状态转移:从较小子问题逐步求解较大子问题
for (i in 3..n) {
dp[i] = dp[i - 1] + dp[i - 2]
}
return dp[n]
}
```
=== "Zig"
```zig title="climbing_stairs_dp.zig"
@ -1462,6 +1557,23 @@ $$
}
```
=== "Kotlin"
```kotlin title="climbing_stairs_dp.kt"
/* 爬楼梯:空间优化后的动态规划 */
fun climbingStairsDPComp(n: Int): Int {
if (n == 1 || n == 2) return n
var a = 1
var b = 2
for (i in 3..n) {
val tmp = b
b += a
a = tmp
}
return b
}
```
=== "Zig"
```zig title="climbing_stairs_dp.zig"