This commit is contained in:
krahets
2024-03-25 22:43:12 +08:00
parent 22017aa8e5
commit 87af663929
70 changed files with 7428 additions and 32 deletions

View File

@ -281,6 +281,26 @@ $$
}
```
=== "Kotlin"
```kotlin title="min_cost_climbing_stairs_dp.kt"
/* 爬楼梯最小代价:动态规划 */
fun minCostClimbingStairsDP(cost: IntArray): Int {
val n = cost.size - 1
if (n == 1 || n == 2) return cost[n]
// 初始化 dp 表,用于存储子问题的解
val dp = IntArray(n + 1)
// 初始状态:预设最小子问题的解
dp[1] = cost[1]
dp[2] = cost[2]
// 状态转移:从较小子问题逐步求解较大子问题
for (i in 3..n) {
dp[i] = (min(dp[i - 1].toDouble(), dp[i - 2].toDouble()) + cost[i]).toInt()
}
return dp[n]
}
```
=== "Zig"
```zig title="min_cost_climbing_stairs_dp.zig"
@ -522,6 +542,24 @@ $$
}
```
=== "Kotlin"
```kotlin title="min_cost_climbing_stairs_dp.kt"
/* 爬楼梯最小代价:空间优化后的动态规划 */
fun minCostClimbingStairsDPComp(cost: IntArray): Int {
val n = cost.size - 1
if (n == 1 || n == 2) return cost[n]
var a = cost[1]
var b = cost[2]
for (i in 3..n) {
val tmp = b
b = (min(a.toDouble(), tmp.toDouble()) + cost[i]).toInt()
a = tmp
}
return b
}
```
=== "Zig"
```zig title="min_cost_climbing_stairs_dp.zig"
@ -858,6 +896,30 @@ $$
}
```
=== "Kotlin"
```kotlin title="climbing_stairs_constraint_dp.kt"
/* 带约束爬楼梯:动态规划 */
fun climbingStairsConstraintDP(n: Int): Int {
if (n == 1 || n == 2) {
return 1
}
// 初始化 dp 表,用于存储子问题的解
val dp = Array(n + 1) { IntArray(3) }
// 初始状态:预设最小子问题的解
dp[1][1] = 1
dp[1][2] = 0
dp[2][1] = 0
dp[2][2] = 1
// 状态转移:从较小子问题逐步求解较大子问题
for (i in 3..n) {
dp[i][1] = dp[i - 1][2]
dp[i][2] = dp[i - 2][1] + dp[i - 2][2]
}
return dp[n][1] + dp[n][2]
}
```
=== "Zig"
```zig title="climbing_stairs_constraint_dp.zig"

View File

@ -345,6 +345,31 @@ $$
}
```
=== "Kotlin"
```kotlin title="min_path_sum.kt"
/* 最小路径和:暴力搜索 */
fun minPathSumDFS(
grid: Array<Array<Int>>,
i: Int,
j: Int
): Int {
// 若为左上角单元格,则终止搜索
if (i == 0 && j == 0) {
return grid[0][0]
}
// 若行列索引越界,则返回 +∞ 代价
if (i < 0 || j < 0) {
return Int.MAX_VALUE
}
// 计算从左上角到 (i-1, j) 和 (i, j-1) 的最小路径代价
val up = minPathSumDFS(grid, i - 1, j)
val left = minPathSumDFS(grid, i, j - 1)
// 返回从左上角到 (i, j) 的最小路径代价
return (min(left.toDouble(), up.toDouble()) + grid[i][j]).toInt()
}
```
=== "Zig"
```zig title="min_path_sum.zig"
@ -675,6 +700,37 @@ $$
}
```
=== "Kotlin"
```kotlin title="min_path_sum.kt"
/* 最小路径和:记忆化搜索 */
fun minPathSumDFSMem(
grid: Array<Array<Int>>,
mem: Array<Array<Int>>,
i: Int,
j: Int
): Int {
// 若为左上角单元格,则终止搜索
if (i == 0 && j == 0) {
return grid[0][0]
}
// 若行列索引越界,则返回 +∞ 代价
if (i < 0 || j < 0) {
return Int.MAX_VALUE
}
// 若已有记录,则直接返回
if (mem[i][j] != -1) {
return mem[i][j]
}
// 左边和上边单元格的最小路径代价
val up = minPathSumDFSMem(grid, mem, i - 1, j)
val left = minPathSumDFSMem(grid, mem, i, j - 1)
// 记录并返回左上角到 (i, j) 的最小路径代价
mem[i][j] = (min(left.toDouble(), up.toDouble()) + grid[i][j]).toInt()
return mem[i][j]
}
```
=== "Zig"
```zig title="min_path_sum.zig"
@ -1026,6 +1082,35 @@ $$
}
```
=== "Kotlin"
```kotlin title="min_path_sum.kt"
/* 最小路径和:动态规划 */
fun minPathSumDP(grid: Array<Array<Int>>): Int {
val n = grid.size
val m = grid[0].size
// 初始化 dp 表
val dp = Array(n) { IntArray(m) }
dp[0][0] = grid[0][0]
// 状态转移:首行
for (j in 1..<m) {
dp[0][j] = dp[0][j - 1] + grid[0][j]
}
// 状态转移:首列
for (i in 1..<n) {
dp[i][0] = dp[i - 1][0] + grid[i][0]
}
// 状态转移:其余行和列
for (i in 1..<n) {
for (j in 1..<m) {
dp[i][j] =
(min(dp[i][j - 1].toDouble(), dp[i - 1][j].toDouble()) + grid[i][j]).toInt()
}
}
return dp[n - 1][m - 1]
}
```
=== "Zig"
```zig title="min_path_sum.zig"
@ -1393,6 +1478,33 @@ $$
}
```
=== "Kotlin"
```kotlin title="min_path_sum.kt"
/* 最小路径和:空间优化后的动态规划 */
fun minPathSumDPComp(grid: Array<Array<Int>>): Int {
val n = grid.size
val m = grid[0].size
// 初始化 dp 表
val dp = IntArray(m)
// 状态转移:首行
dp[0] = grid[0][0]
for (j in 1..<m) {
dp[j] = dp[j - 1] + grid[0][j]
}
// 状态转移:其余行
for (i in 1..<n) {
// 状态转移:首列
dp[0] = dp[0] + grid[i][0]
// 状态转移:其余列
for (j in 1..<m) {
dp[j] = (min(dp[j - 1].toDouble(), dp[j].toDouble()) + grid[i][j]).toInt()
}
}
return dp[m - 1]
}
```
=== "Zig"
```zig title="min_path_sum.zig"

View File

@ -420,6 +420,41 @@ $$
}
```
=== "Kotlin"
```kotlin title="edit_distance.kt"
/* 编辑距离:动态规划 */
fun editDistanceDP(s: String, t: String): Int {
val n = s.length
val m = t.length
val dp = Array(n + 1) { IntArray(m + 1) }
// 状态转移:首行首列
for (i in 1..n) {
dp[i][0] = i
}
for (j in 1..m) {
dp[0][j] = j
}
// 状态转移:其余行和列
for (i in 1..n) {
for (j in 1..m) {
if (s[i - 1] == t[j - 1]) {
// 若两字符相等,则直接跳过此两字符
dp[i][j] = dp[i - 1][j - 1]
} else {
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
dp[i][j] =
(min(
min(dp[i][j - 1].toDouble(), dp[i - 1][j].toDouble()),
dp[i - 1][j - 1].toDouble()
) + 1).toInt()
}
}
}
return dp[n][m]
}
```
=== "Zig"
```zig title="edit_distance.zig"
@ -875,6 +910,40 @@ $$
}
```
=== "Kotlin"
```kotlin title="edit_distance.kt"
/* 编辑距离:空间优化后的动态规划 */
fun editDistanceDPComp(s: String, t: String): Int {
val n = s.length
val m = t.length
val dp = IntArray(m + 1)
// 状态转移:首行
for (j in 1..m) {
dp[j] = j
}
// 状态转移:其余行
for (i in 1..n) {
// 状态转移:首列
var leftup = dp[0] // 暂存 dp[i-1, j-1]
dp[0] = i
// 状态转移:其余列
for (j in 1..m) {
val temp = dp[j]
if (s[i - 1] == t[j - 1]) {
// 若两字符相等,则直接跳过此两字符
dp[j] = leftup
} else {
// 最少编辑步数 = 插入、删除、替换这三种操作的最少编辑步数 + 1
dp[j] = (min(min(dp[j - 1].toDouble(), dp[j].toDouble()), leftup.toDouble()) + 1).toInt()
}
leftup = temp // 更新为下一轮的 dp[i-1, j-1]
}
}
return dp[m]
}
```
=== "Zig"
```zig title="edit_distance.zig"

View File

@ -356,6 +356,39 @@ comments: true
}
```
=== "Kotlin"
```kotlin title="climbing_stairs_backtrack.kt"
/* 回溯 */
fun backtrack(
choices: List<Int>,
state: Int,
n: Int,
res: MutableList<Int>
) {
// 当爬到第 n 阶时,方案数量加 1
if (state == n) res[0] = res[0] + 1
// 遍历所有选择
for (choice in choices) {
// 剪枝:不允许越过第 n 阶
if (state + choice > n) continue
// 尝试:做出选择,更新状态
backtrack(choices, state + choice, n, res)
// 回退
}
}
/* 爬楼梯:回溯 */
fun climbingStairsBacktrack(n: Int): Int {
val choices = mutableListOf(1, 2) // 可选择向上爬 1 阶或 2 阶
val state = 0 // 从第 0 阶开始爬
val res = ArrayList<Int>()
res.add(0) // 使用 res[0] 记录方案数量
backtrack(choices, state, n, res)
return res[0]
}
```
=== "Zig"
```zig title="climbing_stairs_backtrack.zig"
@ -629,6 +662,24 @@ $$
}
```
=== "Kotlin"
```kotlin title="climbing_stairs_dfs.kt"
/* 搜索 */
fun dfs(i: Int): Int {
// 已知 dp[1] 和 dp[2] ,返回之
if (i == 1 || i == 2) return i
// dp[i] = dp[i-1] + dp[i-2]
val count = dfs(i - 1) + dfs(i - 2)
return count
}
/* 爬楼梯:搜索 */
fun climbingStairsDFS(n: Int): Int {
return dfs(n)
}
```
=== "Zig"
```zig title="climbing_stairs_dfs.zig"
@ -967,6 +1018,31 @@ $$
}
```
=== "Kotlin"
```kotlin title="climbing_stairs_dfs_mem.kt"
/* 记忆化搜索 */
fun dfs(i: Int, mem: IntArray): Int {
// 已知 dp[1] 和 dp[2] ,返回之
if (i == 1 || i == 2) return i
// 若存在记录 dp[i] ,则直接返回之
if (mem[i] != -1) return mem[i]
// dp[i] = dp[i-1] + dp[i-2]
val count = dfs(i - 1, mem) + dfs(i - 2, mem)
// 记录 dp[i]
mem[i] = count
return count
}
/* 爬楼梯:记忆化搜索 */
fun climbingStairsDFSMem(n: Int): Int {
// mem[i] 记录爬到第 i 阶的方案总数,-1 代表无记录
val mem = IntArray(n + 1)
Arrays.fill(mem, -1)
return dfs(n, mem)
}
```
=== "Zig"
```zig title="climbing_stairs_dfs_mem.zig"
@ -1234,6 +1310,25 @@ $$
}
```
=== "Kotlin"
```kotlin title="climbing_stairs_dp.kt"
/* 爬楼梯:动态规划 */
fun climbingStairsDP(n: Int): Int {
if (n == 1 || n == 2) return n
// 初始化 dp 表,用于存储子问题的解
val dp = IntArray(n + 1)
// 初始状态:预设最小子问题的解
dp[1] = 1
dp[2] = 2
// 状态转移:从较小子问题逐步求解较大子问题
for (i in 3..n) {
dp[i] = dp[i - 1] + dp[i - 2]
}
return dp[n]
}
```
=== "Zig"
```zig title="climbing_stairs_dp.zig"
@ -1462,6 +1557,23 @@ $$
}
```
=== "Kotlin"
```kotlin title="climbing_stairs_dp.kt"
/* 爬楼梯:空间优化后的动态规划 */
fun climbingStairsDPComp(n: Int): Int {
if (n == 1 || n == 2) return n
var a = 1
var b = 2
for (i in 3..n) {
val tmp = b
b += a
a = tmp
}
return b
}
```
=== "Zig"
```zig title="climbing_stairs_dp.zig"

View File

@ -295,6 +295,32 @@ $$
}
```
=== "Kotlin"
```kotlin title="knapsack.kt"
/* 0-1 背包:暴力搜索 */
fun knapsackDFS(
wgt: IntArray,
value: IntArray,
i: Int,
c: Int
): Int {
// 若已选完所有物品或背包无剩余容量,则返回价值 0
if (i == 0 || c == 0) {
return 0
}
// 若超过背包容量,则只能选择不放入背包
if (wgt[i - 1] > c) {
return knapsackDFS(wgt, value, i - 1, c)
}
// 计算不放入和放入物品 i 的最大价值
val no = knapsackDFS(wgt, value, i - 1, c)
val yes = knapsackDFS(wgt, value, i - 1, c - wgt[i - 1]) + value[i - 1]
// 返回两种方案中价值更大的那一个
return max(no.toDouble(), yes.toDouble()).toInt()
}
```
=== "Zig"
```zig title="knapsack.zig"
@ -633,6 +659,38 @@ $$
}
```
=== "Kotlin"
```kotlin title="knapsack.kt"
/* 0-1 背包:记忆化搜索 */
fun knapsackDFSMem(
wgt: IntArray,
value: IntArray,
mem: Array<IntArray>,
i: Int,
c: Int
): Int {
// 若已选完所有物品或背包无剩余容量,则返回价值 0
if (i == 0 || c == 0) {
return 0
}
// 若已有记录,则直接返回
if (mem[i][c] != -1) {
return mem[i][c]
}
// 若超过背包容量,则只能选择不放入背包
if (wgt[i - 1] > c) {
return knapsackDFSMem(wgt, value, mem, i - 1, c)
}
// 计算不放入和放入物品 i 的最大价值
val no = knapsackDFSMem(wgt, value, mem, i - 1, c)
val yes = knapsackDFSMem(wgt, value, mem, i - 1, c - wgt[i - 1]) + value[i - 1]
// 记录并返回两种方案中价值更大的那一个
mem[i][c] = max(no.toDouble(), yes.toDouble()).toInt()
return mem[i][c]
}
```
=== "Zig"
```zig title="knapsack.zig"
@ -962,6 +1020,35 @@ $$
}
```
=== "Kotlin"
```kotlin title="knapsack.kt"
/* 0-1 背包:动态规划 */
fun knapsackDP(
wgt: IntArray,
value: IntArray,
cap: Int
): Int {
val n = wgt.size
// 初始化 dp 表
val dp = Array(n + 1) { IntArray(cap + 1) }
// 状态转移
for (i in 1..n) {
for (c in 1..cap) {
if (wgt[i - 1] > c) {
// 若超过背包容量,则不选物品 i
dp[i][c] = dp[i - 1][c]
} else {
// 不选和选物品 i 这两种方案的较大值
dp[i][c] = max(dp[i - 1][c].toDouble(), (dp[i - 1][c - wgt[i - 1]] + value[i - 1]).toDouble())
.toInt()
}
}
}
return dp[n][cap]
}
```
=== "Zig"
```zig title="knapsack.zig"
@ -1321,6 +1408,33 @@ $$
}
```
=== "Kotlin"
```kotlin title="knapsack.kt"
/* 0-1 背包:空间优化后的动态规划 */
fun knapsackDPComp(
wgt: IntArray,
value: IntArray,
cap: Int
): Int {
val n = wgt.size
// 初始化 dp 表
val dp = IntArray(cap + 1)
// 状态转移
for (i in 1..n) {
// 倒序遍历
for (c in cap downTo 1) {
if (wgt[i - 1] <= c) {
// 不选和选物品 i 这两种方案的较大值
dp[c] =
max(dp[c].toDouble(), (dp[c - wgt[i - 1]] + value[i - 1]).toDouble()).toInt()
}
}
}
return dp[cap]
}
```
=== "Zig"
```zig title="knapsack.zig"

View File

@ -323,6 +323,35 @@ $$
}
```
=== "Kotlin"
```kotlin title="unbounded_knapsack.kt"
/* 完全背包:动态规划 */
fun unboundedKnapsackDP(
wgt: IntArray,
value: IntArray,
cap: Int
): Int {
val n = wgt.size
// 初始化 dp 表
val dp = Array(n + 1) { IntArray(cap + 1) }
// 状态转移
for (i in 1..n) {
for (c in 1..cap) {
if (wgt[i - 1] > c) {
// 若超过背包容量,则不选物品 i
dp[i][c] = dp[i - 1][c]
} else {
// 不选和选物品 i 这两种方案的较大值
dp[i][c] = max(dp[i - 1][c].toDouble(), (dp[i][c - wgt[i - 1]] + value[i - 1]).toDouble())
.toInt()
}
}
}
return dp[n][cap]
}
```
=== "Zig"
```zig title="unbounded_knapsack.zig"
@ -648,6 +677,35 @@ $$
}
```
=== "Kotlin"
```kotlin title="unbounded_knapsack.kt"
/* 完全背包:空间优化后的动态规划 */
fun unboundedKnapsackDPComp(
wgt: IntArray,
value: IntArray,
cap: Int
): Int {
val n = wgt.size
// 初始化 dp 表
val dp = IntArray(cap + 1)
// 状态转移
for (i in 1..n) {
for (c in 1..cap) {
if (wgt[i - 1] > c) {
// 若超过背包容量,则不选物品 i
dp[c] = dp[c]
} else {
// 不选和选物品 i 这两种方案的较大值
dp[c] =
max(dp[c].toDouble(), (dp[c - wgt[i - 1]] + value[i - 1]).toDouble()).toInt()
}
}
}
return dp[cap]
}
```
=== "Zig"
```zig title="unbounded_knapsack.zig"
@ -1063,6 +1121,36 @@ $$
}
```
=== "Kotlin"
```kotlin title="coin_change.kt"
/* 零钱兑换:动态规划 */
fun coinChangeDP(coins: IntArray, amt: Int): Int {
val n = coins.size
val MAX = amt + 1
// 初始化 dp 表
val dp = Array(n + 1) { IntArray(amt + 1) }
// 状态转移:首行首列
for (a in 1..amt) {
dp[0][a] = MAX
}
// 状态转移:其余行和列
for (i in 1..n) {
for (a in 1..amt) {
if (coins[i - 1] > a) {
// 若超过目标金额,则不选硬币 i
dp[i][a] = dp[i - 1][a]
} else {
// 不选和选硬币 i 这两种方案的较小值
dp[i][a] = min(dp[i - 1][a].toDouble(), (dp[i][a - coins[i - 1]] + 1).toDouble())
.toInt()
}
}
}
return if (dp[n][amt] != MAX) dp[n][amt] else -1
}
```
=== "Zig"
```zig title="coin_change.zig"
@ -1453,6 +1541,33 @@ $$
}
```
=== "Kotlin"
```kotlin title="coin_change.kt"
/* 零钱兑换:空间优化后的动态规划 */
fun coinChangeDPComp(coins: IntArray, amt: Int): Int {
val n = coins.size
val MAX = amt + 1
// 初始化 dp 表
val dp = IntArray(amt + 1)
Arrays.fill(dp, MAX)
dp[0] = 0
// 状态转移
for (i in 1..n) {
for (a in 1..amt) {
if (coins[i - 1] > a) {
// 若超过目标金额,则不选硬币 i
dp[a] = dp[a]
} else {
// 不选和选硬币 i 这两种方案的较小值
dp[a] = min(dp[a].toDouble(), (dp[a - coins[i - 1]] + 1).toDouble()).toInt()
}
}
}
return if (dp[amt] != MAX) dp[amt] else -1
}
```
=== "Zig"
```zig title="coin_change.zig"
@ -1832,6 +1947,34 @@ $$
}
```
=== "Kotlin"
```kotlin title="coin_change_ii.kt"
/* 零钱兑换 II动态规划 */
fun coinChangeIIDP(coins: IntArray, amt: Int): Int {
val n = coins.size
// 初始化 dp 表
val dp = Array(n + 1) { IntArray(amt + 1) }
// 初始化首列
for (i in 0..n) {
dp[i][0] = 1
}
// 状态转移
for (i in 1..n) {
for (a in 1..amt) {
if (coins[i - 1] > a) {
// 若超过目标金额,则不选硬币 i
dp[i][a] = dp[i - 1][a]
} else {
// 不选和选硬币 i 这两种方案之和
dp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]]
}
}
}
return dp[n][amt]
}
```
=== "Zig"
```zig title="coin_change_ii.zig"
@ -2145,6 +2288,31 @@ $$
}
```
=== "Kotlin"
```kotlin title="coin_change_ii.kt"
/* 零钱兑换 II空间优化后的动态规划 */
fun coinChangeIIDPComp(coins: IntArray, amt: Int): Int {
val n = coins.size
// 初始化 dp 表
val dp = IntArray(amt + 1)
dp[0] = 1
// 状态转移
for (i in 1..n) {
for (a in 1..amt) {
if (coins[i - 1] > a) {
// 若超过目标金额,则不选硬币 i
dp[a] = dp[a]
} else {
// 不选和选硬币 i 这两种方案之和
dp[a] = dp[a] + dp[a - coins[i - 1]]
}
}
}
return dp[amt]
}
```
=== "Zig"
```zig title="coin_change_ii.zig"