This commit is contained in:
krahets
2024-04-03 04:41:27 +08:00
parent 20f79f5f32
commit 8591529021
47 changed files with 136 additions and 135 deletions

View File

@ -28,11 +28,11 @@ comments: true
## 2.1.2   理论估算
由于实际测试具有较大的局限性,因此我们可以考虑仅通过一些计算来评估算法的效率。这种估算方法被称为渐近复杂度分析 asymptotic complexity analysis」,简称「复杂度分析」
由于实际测试具有较大的局限性,因此我们可以考虑仅通过一些计算来评估算法的效率。这种估算方法被称为<u>渐近复杂度分析asymptotic complexity analysis</u>,简称<u>复杂度分析</u>
复杂度分析能够体现算法运行所需的时间和空间资源与输入数据大小之间的关系。**它描述了随着输入数据大小的增加,算法执行所需时间和空间的增长趋势**。这个定义有些拗口,我们可以将其分为三个重点来理解。
- “时间和空间资源”分别对应时间复杂度 time complexity」和「空间复杂度 space complexity
- “时间和空间资源”分别对应<u>时间复杂度time complexity</u><u>空间复杂度space complexity</u>
- “随着输入数据大小的增加”意味着复杂度反映了算法运行效率与输入数据体量之间的关系。
- “时间和空间的增长趋势”表示复杂度分析关注的不是运行时间或占用空间的具体值,而是时间或空间增长的“快慢”。