mirror of
https://github.com/krahets/hello-algo.git
synced 2025-11-02 04:31:55 +08:00
feat: add Swift codes for time complexity article
This commit is contained in:
@ -0,0 +1,170 @@
|
||||
/*
|
||||
* File: time_complexity.swift
|
||||
* Created Time: 2022-12-26
|
||||
* Author: nuomi1 (nuomi1@qq.com)
|
||||
*/
|
||||
|
||||
// 常数阶
|
||||
func constant(n: Int) -> Int {
|
||||
var count = 0
|
||||
let size = 100_000
|
||||
for _ in 0 ..< size {
|
||||
count += 1
|
||||
}
|
||||
return count
|
||||
}
|
||||
|
||||
// 线性阶
|
||||
func linear(n: Int) -> Int {
|
||||
var count = 0
|
||||
for _ in 0 ..< n {
|
||||
count += 1
|
||||
}
|
||||
return count
|
||||
}
|
||||
|
||||
// 线性阶(遍历数组)
|
||||
func arrayTraversal(nums: [Int]) -> Int {
|
||||
var count = 0
|
||||
// 循环次数与数组长度成正比
|
||||
for _ in nums {
|
||||
count += 1
|
||||
}
|
||||
return count
|
||||
}
|
||||
|
||||
// 平方阶
|
||||
func quadratic(n: Int) -> Int {
|
||||
var count = 0
|
||||
// 循环次数与数组长度成平方关系
|
||||
for _ in 0 ..< n {
|
||||
for _ in 0 ..< n {
|
||||
count += 1
|
||||
}
|
||||
}
|
||||
return count
|
||||
}
|
||||
|
||||
// 平方阶(冒泡排序)
|
||||
func bubbleSort(nums: inout [Int]) -> Int {
|
||||
var count = 0 // 计数器
|
||||
// 外循环:待排序元素数量为 n-1, n-2, ..., 1
|
||||
for i in sequence(first: nums.count - 1, next: { $0 > 0 ? $0 - 1 : nil }) {
|
||||
// 内循环:冒泡操作
|
||||
for j in 0 ..< i {
|
||||
if nums[j] > nums[j + 1] {
|
||||
// 交换 nums[j] 与 nums[j + 1]
|
||||
let tmp = nums[j]
|
||||
nums[j] = nums[j + 1]
|
||||
nums[j + 1] = tmp
|
||||
count += 3 // 元素交换包含 3 个单元操作
|
||||
}
|
||||
}
|
||||
}
|
||||
return count
|
||||
}
|
||||
|
||||
// 指数阶(循环实现)
|
||||
func exponential(n: Int) -> Int {
|
||||
var count = 0
|
||||
var base = 1
|
||||
// cell 每轮一分为二,形成数列 1, 2, 4, 8, ..., 2^(n-1)
|
||||
for _ in 0 ..< n {
|
||||
for _ in 0 ..< base {
|
||||
count += 1
|
||||
}
|
||||
base *= 2
|
||||
}
|
||||
// count = 1 + 2 + 4 + 8 + .. + 2^(n-1) = 2^n - 1
|
||||
return count
|
||||
}
|
||||
|
||||
// 指数阶(递归实现)
|
||||
func expRecur(n: Int) -> Int {
|
||||
if n == 1 {
|
||||
return 1
|
||||
}
|
||||
return expRecur(n: n - 1) + expRecur(n: n - 1) + 1
|
||||
}
|
||||
|
||||
// 对数阶(循环实现)
|
||||
func logarithmic(n: Int) -> Int {
|
||||
var count = 0
|
||||
var n = n
|
||||
while n > 1 {
|
||||
n = n / 2
|
||||
count += 1
|
||||
}
|
||||
return count
|
||||
}
|
||||
|
||||
// 对数阶(递归实现)
|
||||
func logRecur(n: Int) -> Int {
|
||||
if n <= 1 {
|
||||
return 0
|
||||
}
|
||||
return logRecur(n: n / 2) + 1
|
||||
}
|
||||
|
||||
// 线性对数阶
|
||||
func linearLogRecur(n: Double) -> Int {
|
||||
if n <= 1 {
|
||||
return 1
|
||||
}
|
||||
var count = linearLogRecur(n: n / 2) + linearLogRecur(n: n / 2)
|
||||
for _ in 0 ..< Int(n) {
|
||||
count += 1
|
||||
}
|
||||
return count
|
||||
}
|
||||
|
||||
// 阶乘阶(递归实现)
|
||||
func factorialRecur(n: Int) -> Int {
|
||||
if n == 0 {
|
||||
return 1
|
||||
}
|
||||
var count = 0
|
||||
// 从 1 个分裂出 n 个
|
||||
for _ in 0 ..< n {
|
||||
count += factorialRecur(n: n - 1)
|
||||
}
|
||||
return count
|
||||
}
|
||||
|
||||
func main() {
|
||||
// 可以修改 n 运行,体会一下各种复杂度的操作数量变化趋势
|
||||
let n = 8
|
||||
print("输入数据大小 n =", n)
|
||||
|
||||
var count = constant(n: n)
|
||||
print("常数阶的计算操作数量 =", count)
|
||||
|
||||
count = linear(n: n)
|
||||
print("线性阶的计算操作数量 =", count)
|
||||
count = arrayTraversal(nums: Array(repeating: 0, count: n))
|
||||
print("线性阶(遍历数组)的计算操作数量 =", count)
|
||||
|
||||
count = quadratic(n: n)
|
||||
print("平方阶的计算操作数量 =", count)
|
||||
var nums = Array(sequence(first: n, next: { $0 > 0 ? $0 - 1 : nil })) // [n,n-1,...,2,1]
|
||||
count = bubbleSort(nums: &nums)
|
||||
print("平方阶(冒泡排序)的计算操作数量 =", count)
|
||||
|
||||
count = exponential(n: n)
|
||||
print("指数阶(循环实现)的计算操作数量 =", count)
|
||||
count = expRecur(n: n)
|
||||
print("指数阶(递归实现)的计算操作数量 =", count)
|
||||
|
||||
count = logarithmic(n: n)
|
||||
print("对数阶(循环实现)的计算操作数量 =", count)
|
||||
count = logRecur(n: n)
|
||||
print("对数阶(递归实现)的计算操作数量 =", count)
|
||||
|
||||
count = linearLogRecur(n: Double(n))
|
||||
print("线性对数阶(递归实现)的计算操作数量 =", count)
|
||||
|
||||
count = factorialRecur(n: n)
|
||||
print("阶乘阶(递归实现)的计算操作数量 =", count)
|
||||
}
|
||||
|
||||
main()
|
||||
@ -0,0 +1,37 @@
|
||||
/*
|
||||
* File: worst_best_time_complexity.swift
|
||||
* Created Time: 2022-12-26
|
||||
* Author: nuomi1 (nuomi1@qq.com)
|
||||
*/
|
||||
|
||||
// 生成一个数组,元素为 { 1, 2, ..., n },顺序被打乱
|
||||
func randomNumbers(n: Int) -> [Int] {
|
||||
// 生成数组 nums = { 1, 2, 3, ..., n }
|
||||
var nums = Array(1 ... n)
|
||||
// 随机打乱数组元素
|
||||
nums.shuffle()
|
||||
return nums
|
||||
}
|
||||
|
||||
// 查找数组 nums 中数字 1 所在索引
|
||||
func findOne(nums: [Int]) -> Int {
|
||||
for i in nums.indices {
|
||||
if nums[i] == 1 {
|
||||
return i
|
||||
}
|
||||
}
|
||||
return -1
|
||||
}
|
||||
|
||||
// Driver Code
|
||||
func main() {
|
||||
for _ in 0 ..< 10 {
|
||||
let n = 100
|
||||
let nums = randomNumbers(n: n)
|
||||
let index = findOne(nums: nums)
|
||||
print("数组 [ 1, 2, ..., n ] 被打乱后 =", nums)
|
||||
print("数字 1 的索引为", index)
|
||||
}
|
||||
}
|
||||
|
||||
main()
|
||||
Reference in New Issue
Block a user