mirror of
				https://github.com/krahets/hello-algo.git
				synced 2025-11-01 03:24:24 +08:00 
			
		
		
		
	Sync zh and zh-hant versions (#1801)
* Sync zh and zh-hant versions. * Unifying "数据体量" -> "数据规模".
This commit is contained in:
		| @ -90,7 +90,7 @@ impl MyList { | ||||
|             panic!("索引越界") | ||||
|         }; | ||||
|         let num = self.arr[index]; | ||||
|         // 將將索引 index 之後的元素都向前移動一位 | ||||
|         // 將索引 index 之後的元素都向前移動一位 | ||||
|         for j in index..self.size - 1 { | ||||
|             self.arr[j] = self.arr[j + 1]; | ||||
|         } | ||||
|  | ||||
| @ -13,22 +13,12 @@ fn test_push_max(heap: &mut BinaryHeap<i32>, val: i32) { | ||||
|     println!("\n元素 {} 入堆積後", val); | ||||
|     print_util::print_heap(heap.iter().map(|&val| val).collect()); | ||||
| } | ||||
| fn test_push_min(heap: &mut BinaryHeap<Reverse<i32>>, val: i32) { | ||||
|     heap.push(Reverse(val)); // 元素入堆積 | ||||
|     println!("\n元素 {} 入堆積後", val); | ||||
|     print_util::print_heap(heap.iter().map(|&val| val.0).collect()); | ||||
| } | ||||
|  | ||||
| fn test_pop_max(heap: &mut BinaryHeap<i32>) { | ||||
|     let val = heap.pop().unwrap(); | ||||
|     println!("\n堆積頂元素 {} 出堆積後", val); | ||||
|     print_util::print_heap(heap.iter().map(|&val| val).collect()); | ||||
| } | ||||
| fn test_pop_min(heap: &mut BinaryHeap<Reverse<i32>>) { | ||||
|     let val = heap.pop().unwrap().0; | ||||
|     println!("\n堆積頂元素 {} 出堆積後", val); | ||||
|     print_util::print_heap(heap.iter().map(|&val| val.0).collect()); | ||||
| } | ||||
|  | ||||
| /* Driver Code */ | ||||
| fn main() { | ||||
|  | ||||
| @ -5,17 +5,17 @@ | ||||
|  */ | ||||
| use hello_algo_rust::include::print_util; | ||||
| /* 基於環形陣列實現的雙向佇列 */ | ||||
| struct ArrayDeque { | ||||
|     nums: Vec<i32>,  // 用於儲存雙向佇列元素的陣列 | ||||
| struct ArrayDeque<T> { | ||||
|     nums: Vec<T>,    // 用於儲存雙向佇列元素的陣列 | ||||
|     front: usize,    // 佇列首指標,指向佇列首元素 | ||||
|     que_size: usize, // 雙向佇列長度 | ||||
| } | ||||
|  | ||||
| impl ArrayDeque { | ||||
| impl<T: Copy + Default> ArrayDeque<T> { | ||||
|     /* 建構子 */ | ||||
|     pub fn new(capacity: usize) -> Self { | ||||
|         Self { | ||||
|             nums: vec![0; capacity], | ||||
|             nums: vec![T::default(); capacity], | ||||
|             front: 0, | ||||
|             que_size: 0, | ||||
|         } | ||||
| @ -41,11 +41,11 @@ impl ArrayDeque { | ||||
|         // 透過取餘操作實現陣列首尾相連 | ||||
|         // 當 i 越過陣列尾部後,回到頭部 | ||||
|         // 當 i 越過陣列頭部後,回到尾部 | ||||
|         return ((i + self.capacity() as i32) % self.capacity() as i32) as usize; | ||||
|         ((i + self.capacity() as i32) % self.capacity() as i32) as usize | ||||
|     } | ||||
|  | ||||
|     /* 佇列首入列 */ | ||||
|     pub fn push_first(&mut self, num: i32) { | ||||
|     pub fn push_first(&mut self, num: T) { | ||||
|         if self.que_size == self.capacity() { | ||||
|             println!("雙向佇列已滿"); | ||||
|             return; | ||||
| @ -59,7 +59,7 @@ impl ArrayDeque { | ||||
|     } | ||||
|  | ||||
|     /* 佇列尾入列 */ | ||||
|     pub fn push_last(&mut self, num: i32) { | ||||
|     pub fn push_last(&mut self, num: T) { | ||||
|         if self.que_size == self.capacity() { | ||||
|             println!("雙向佇列已滿"); | ||||
|             return; | ||||
| @ -72,7 +72,7 @@ impl ArrayDeque { | ||||
|     } | ||||
|  | ||||
|     /* 佇列首出列 */ | ||||
|     fn pop_first(&mut self) -> i32 { | ||||
|     fn pop_first(&mut self) -> T { | ||||
|         let num = self.peek_first(); | ||||
|         // 佇列首指標向後移動一位 | ||||
|         self.front = self.index(self.front as i32 + 1); | ||||
| @ -81,14 +81,14 @@ impl ArrayDeque { | ||||
|     } | ||||
|  | ||||
|     /* 佇列尾出列 */ | ||||
|     fn pop_last(&mut self) -> i32 { | ||||
|     fn pop_last(&mut self) -> T { | ||||
|         let num = self.peek_last(); | ||||
|         self.que_size -= 1; | ||||
|         num | ||||
|     } | ||||
|  | ||||
|     /* 訪問佇列首元素 */ | ||||
|     fn peek_first(&self) -> i32 { | ||||
|     fn peek_first(&self) -> T { | ||||
|         if self.is_empty() { | ||||
|             panic!("雙向佇列為空") | ||||
|         }; | ||||
| @ -96,7 +96,7 @@ impl ArrayDeque { | ||||
|     } | ||||
|  | ||||
|     /* 訪問佇列尾元素 */ | ||||
|     fn peek_last(&self) -> i32 { | ||||
|     fn peek_last(&self) -> T { | ||||
|         if self.is_empty() { | ||||
|             panic!("雙向佇列為空") | ||||
|         }; | ||||
| @ -106,9 +106,9 @@ impl ArrayDeque { | ||||
|     } | ||||
|  | ||||
|     /* 返回陣列用於列印 */ | ||||
|     fn to_array(&self) -> Vec<i32> { | ||||
|     fn to_array(&self) -> Vec<T> { | ||||
|         // 僅轉換有效長度範圍內的串列元素 | ||||
|         let mut res = vec![0; self.que_size]; | ||||
|         let mut res = vec![T::default(); self.que_size]; | ||||
|         let mut j = self.front; | ||||
|         for i in 0..self.que_size { | ||||
|             res[i] = self.nums[self.index(j as i32)]; | ||||
|  | ||||
| @ -5,18 +5,18 @@ | ||||
|  */ | ||||
|  | ||||
| /* 基於環形陣列實現的佇列 */ | ||||
| struct ArrayQueue { | ||||
|     nums: Vec<i32>,    // 用於儲存佇列元素的陣列 | ||||
| struct ArrayQueue<T> { | ||||
|     nums: Vec<T>,      // 用於儲存佇列元素的陣列 | ||||
|     front: i32,        // 佇列首指標,指向佇列首元素 | ||||
|     que_size: i32,     // 佇列長度 | ||||
|     que_capacity: i32, // 佇列容量 | ||||
| } | ||||
|  | ||||
| impl ArrayQueue { | ||||
| impl<T: Copy + Default> ArrayQueue<T> { | ||||
|     /* 建構子 */ | ||||
|     fn new(capacity: i32) -> ArrayQueue { | ||||
|     fn new(capacity: i32) -> ArrayQueue<T> { | ||||
|         ArrayQueue { | ||||
|             nums: vec![0; capacity as usize], | ||||
|             nums: vec![T::default(); capacity as usize], | ||||
|             front: 0, | ||||
|             que_size: 0, | ||||
|             que_capacity: capacity, | ||||
| @ -39,7 +39,7 @@ impl ArrayQueue { | ||||
|     } | ||||
|  | ||||
|     /* 入列 */ | ||||
|     fn push(&mut self, num: i32) { | ||||
|     fn push(&mut self, num: T) { | ||||
|         if self.que_size == self.capacity() { | ||||
|             println!("佇列已滿"); | ||||
|             return; | ||||
| @ -53,7 +53,7 @@ impl ArrayQueue { | ||||
|     } | ||||
|  | ||||
|     /* 出列 */ | ||||
|     fn pop(&mut self) -> i32 { | ||||
|     fn pop(&mut self) -> T { | ||||
|         let num = self.peek(); | ||||
|         // 佇列首指標向後移動一位,若越過尾部,則返回到陣列頭部 | ||||
|         self.front = (self.front + 1) % self.que_capacity; | ||||
| @ -62,7 +62,7 @@ impl ArrayQueue { | ||||
|     } | ||||
|  | ||||
|     /* 訪問佇列首元素 */ | ||||
|     fn peek(&self) -> i32 { | ||||
|     fn peek(&self) -> T { | ||||
|         if self.is_empty() { | ||||
|             panic!("index out of bounds"); | ||||
|         } | ||||
| @ -70,10 +70,10 @@ impl ArrayQueue { | ||||
|     } | ||||
|  | ||||
|     /* 返回陣列 */ | ||||
|     fn to_vector(&self) -> Vec<i32> { | ||||
|     fn to_vector(&self) -> Vec<T> { | ||||
|         let cap = self.que_capacity; | ||||
|         let mut j = self.front; | ||||
|         let mut arr = vec![0; self.que_size as usize]; | ||||
|         let mut arr = vec![T::default(); cap as usize]; | ||||
|         for i in 0..self.que_size { | ||||
|             arr[i as usize] = self.nums[(j % cap) as usize]; | ||||
|             j += 1; | ||||
|  | ||||
| @ -50,11 +50,11 @@ impl<T: Copy> LinkedListDeque<T> { | ||||
|  | ||||
|     /* 判斷雙向佇列是否為空 */ | ||||
|     pub fn is_empty(&self) -> bool { | ||||
|         return self.size() == 0; | ||||
|         return self.que_size == 0; | ||||
|     } | ||||
|  | ||||
|     /* 入列操作 */ | ||||
|     pub fn push(&mut self, num: T, is_front: bool) { | ||||
|     fn push(&mut self, num: T, is_front: bool) { | ||||
|         let node = ListNode::new(num); | ||||
|         // 佇列首入列操作 | ||||
|         if is_front { | ||||
| @ -102,7 +102,7 @@ impl<T: Copy> LinkedListDeque<T> { | ||||
|     } | ||||
|  | ||||
|     /* 出列操作 */ | ||||
|     pub fn pop(&mut self, is_front: bool) -> Option<T> { | ||||
|     fn pop(&mut self, is_front: bool) -> Option<T> { | ||||
|         // 若佇列為空,直接返回 None | ||||
|         if self.is_empty() { | ||||
|             return None; | ||||
|  | ||||
| @ -33,7 +33,7 @@ impl<T: Copy> LinkedListQueue<T> { | ||||
|  | ||||
|     /* 判斷佇列是否為空 */ | ||||
|     pub fn is_empty(&self) -> bool { | ||||
|         return self.size() == 0; | ||||
|         return self.que_size == 0; | ||||
|     } | ||||
|  | ||||
|     /* 入列 */ | ||||
|  | ||||
| @ -58,13 +58,17 @@ impl<T: Copy> LinkedListStack<T> { | ||||
|     } | ||||
|  | ||||
|     /* 將 List 轉化為 Array 並返回 */ | ||||
|     pub fn to_array(&self, head: Option<&Rc<RefCell<ListNode<T>>>>) -> Vec<T> { | ||||
|         if let Some(node) = head { | ||||
|             let mut nums = self.to_array(node.borrow().next.as_ref()); | ||||
|             nums.push(node.borrow().val); | ||||
|             return nums; | ||||
|     pub fn to_array(&self) -> Vec<T> { | ||||
|         fn _to_array<T: Sized + Copy>(head: Option<&Rc<RefCell<ListNode<T>>>>) -> Vec<T> { | ||||
|             if let Some(node) = head { | ||||
|                 let mut nums = _to_array(node.borrow().next.as_ref()); | ||||
|                 nums.push(node.borrow().val); | ||||
|                 return nums; | ||||
|             } | ||||
|             return Vec::new(); | ||||
|         } | ||||
|         return Vec::new(); | ||||
|  | ||||
|         _to_array(self.peek()) | ||||
|     } | ||||
| } | ||||
|  | ||||
| @ -80,7 +84,7 @@ fn main() { | ||||
|     stack.push(5); | ||||
|     stack.push(4); | ||||
|     print!("堆疊 stack = "); | ||||
|     print_util::print_array(&stack.to_array(stack.peek())); | ||||
|     print_util::print_array(&stack.to_array()); | ||||
|  | ||||
|     /* 訪問堆疊頂元素 */ | ||||
|     let peek = stack.peek().unwrap().borrow().val; | ||||
| @ -89,7 +93,7 @@ fn main() { | ||||
|     /* 元素出堆疊 */ | ||||
|     let pop = stack.pop().unwrap(); | ||||
|     print!("\n出堆疊元素 pop = {},出堆疊後 stack = ", pop); | ||||
|     print_util::print_array(&stack.to_array(stack.peek())); | ||||
|     print_util::print_array(&stack.to_array()); | ||||
|  | ||||
|     /* 獲取堆疊的長度 */ | ||||
|     let size = stack.size(); | ||||
|  | ||||
| @ -34,7 +34,7 @@ impl TreeNode { | ||||
| macro_rules! op_vec { | ||||
|     ( $( $x:expr ),* ) => { | ||||
|         vec![ | ||||
|             $( Option::from($x).map(|x| x) ),* | ||||
|             $(Option::from($x)),* | ||||
|         ] | ||||
|     }; | ||||
| } | ||||
|  | ||||
| @ -751,7 +751,7 @@ $T(n)$ 是一次函式,說明其執行時間的增長趨勢是線性的,因 | ||||
|  | ||||
|     若存在正實數 $c$ 和實數 $n_0$ ,使得對於所有的 $n > n_0$ ,均有 $T(n) \leq c \cdot f(n)$ ,則可認為 $f(n)$ 給出了 $T(n)$ 的一個漸近上界,記為 $T(n) = O(f(n))$ 。 | ||||
|  | ||||
| 如下圖所示,計算漸近上界就是尋找一個函式 $f(n)$ ,使得當 $n$ 趨向於無窮大時,$T(n)$ 和 $f(n)$ 處於相同的增長級別,僅相差一個常數項 $c$ 的倍數。 | ||||
| 如下圖所示,計算漸近上界就是尋找一個函式 $f(n)$ ,使得當 $n$ 趨向於無窮大時,$T(n)$ 和 $f(n)$ 處於相同的增長級別,僅相差一個常數係數 $c$。 | ||||
|  | ||||
|  | ||||
|  | ||||
| @ -763,9 +763,9 @@ $T(n)$ 是一次函式,說明其執行時間的增長趨勢是線性的,因 | ||||
|  | ||||
| ### 第一步:統計操作數量 | ||||
|  | ||||
| 針對程式碼,逐行從上到下計算即可。然而,由於上述 $c \cdot f(n)$ 中的常數項 $c$ 可以取任意大小,**因此操作數量 $T(n)$ 中的各種係數、常數項都可以忽略**。根據此原則,可以總結出以下計數簡化技巧。 | ||||
| 針對程式碼,逐行從上到下計算即可。然而,由於上述 $c \cdot f(n)$ 中的常數係數 $c$ 可以取任意大小,**因此操作數量 $T(n)$ 中的各種係數、常數項都可以忽略**。根據此原則,可以總結出以下計數簡化技巧。 | ||||
|  | ||||
| 1. **忽略 $T(n)$ 中的常數項**。因為它們都與 $n$ 無關,所以對時間複雜度不產生影響。 | ||||
| 1. **忽略 $T(n)$ 中的常數**。因為它們都與 $n$ 無關,所以對時間複雜度不產生影響。 | ||||
| 2. **省略所有係數**。例如,迴圈 $2n$ 次、$5n + 1$ 次等,都可以簡化記為 $n$ 次,因為 $n$ 前面的係數對時間複雜度沒有影響。 | ||||
| 3. **迴圈巢狀時使用乘法**。總操作數量等於外層迴圈和內層迴圈操作數量之積,每一層迴圈依然可以分別套用第 `1.` 點和第 `2.` 點的技巧。 | ||||
|  | ||||
|  | ||||
		Reference in New Issue
	
	Block a user
	 Yudong Jin
					Yudong Jin