mirror of
https://github.com/krahets/hello-algo.git
synced 2025-07-27 20:32:46 +08:00
deploy
This commit is contained in:
@ -3391,7 +3391,7 @@
|
||||
<!-- Page content -->
|
||||
<h1 id="93">9.3 图的遍历<a class="headerlink" href="#93" title="Permanent link">¶</a></h1>
|
||||
<p>树代表的是“一对多”的关系,而图则具有更高的自由度,可以表示任意的“多对多”关系。因此,我们可以把树看作是图的一种特例。显然,<strong>树的遍历操作也是图的遍历操作的一种特例</strong>。</p>
|
||||
<p>图和树都都需要应用搜索算法来实现遍历操作。图的遍历方式可分为两种:「广度优先遍历 breadth-first traversal」和「深度优先遍历 depth-first traversal」。它们也常被称为「广度优先搜索 breadth-first search」和「深度优先搜索 depth-first search」,简称 BFS 和 DFS 。</p>
|
||||
<p>图和树都需要应用搜索算法来实现遍历操作。图的遍历方式可分为两种:「广度优先遍历 breadth-first traversal」和「深度优先遍历 depth-first traversal」。它们也常被称为「广度优先搜索 breadth-first search」和「深度优先搜索 depth-first search」,简称 BFS 和 DFS 。</p>
|
||||
<h2 id="931">9.3.1 广度优先遍历<a class="headerlink" href="#931" title="Permanent link">¶</a></h2>
|
||||
<p><strong>广度优先遍历是一种由近及远的遍历方式,从某个节点出发,始终优先访问距离最近的顶点,并一层层向外扩张</strong>。如图 9-9 所示,从左上角顶点出发,先遍历该顶点的所有邻接顶点,然后遍历下一个顶点的所有邻接顶点,以此类推,直至所有顶点访问完毕。</p>
|
||||
<p><a class="glightbox" href="../graph_traversal.assets/graph_bfs.png" data-type="image" data-width="100%" data-height="auto" data-desc-position="bottom"><img alt="图的广度优先遍历" src="../graph_traversal.assets/graph_bfs.png" /></a></p>
|
||||
|
Reference in New Issue
Block a user