Move docs/* to docs/zh/*

This commit is contained in:
krahets
2023-10-08 01:33:09 +08:00
parent 400b3914f6
commit 6f7e768cb7
591 changed files with 0 additions and 0 deletions

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB

View File

@ -0,0 +1,137 @@
# 分治搜索策略
我们已经学过,搜索算法分为两大类。
- **暴力搜索**:它通过遍历数据结构实现,时间复杂度为 $O(n)$ 。
- **自适应搜索**:它利用特有的数据组织形式或先验信息,可达到 $O(\log n)$ 甚至 $O(1)$ 的时间复杂度。
实际上,**时间复杂度为 $O(\log n)$ 的搜索算法通常都是基于分治策略实现的**,例如二分查找和树。
- 二分查找的每一步都将问题(在数组中搜索目标元素)分解为一个小问题(在数组的一半中搜索目标元素),这个过程一直持续到数组为空或找到目标元素为止。
- 树是分治关系的代表在二叉搜索树、AVL 树、堆等数据结构中,各种操作的时间复杂度皆为 $O(\log n)$ 。
二分查找的分治策略如下所示。
- **问题可以被分解**:二分查找递归地将原问题(在数组中进行查找)分解为子问题(在数组的一半中进行查找),这是通过比较中间元素和目标元素来实现的。
- **子问题是独立的**:在二分查找中,每轮只处理一个子问题,它不受另外子问题的影响。
- **子问题的解无须合并**:二分查找旨在查找一个特定元素,因此不需要将子问题的解进行合并。当子问题得到解决时,原问题也会同时得到解决。
分治能够提升搜索效率,本质上是因为暴力搜索每轮只能排除一个选项,**而分治搜索每轮可以排除一半选项**。
### 基于分治实现二分
在之前的章节中,二分查找是基于递推(迭代)实现的。现在我们基于分治(递归)来实现它。
!!! question
给定一个长度为 $n$ 的有序数组 `nums` ,数组中所有元素都是唯一的,请查找元素 `target`
从分治角度,我们将搜索区间 $[i, j]$ 对应的子问题记为 $f(i, j)$ 。
从原问题 $f(0, n-1)$ 为起始点,通过以下步骤进行二分查找。
1. 计算搜索区间 $[i, j]$ 的中点 $m$ ,根据它排除一半搜索区间。
2. 递归求解规模减小一半的子问题,可能为 $f(i, m-1)$ 或 $f(m+1, j)$ 。
3. 循环第 `1.``2.` 步,直至找到 `target` 或区间为空时返回。
下图展示了在数组中二分查找元素 $6$ 的分治过程。
![二分查找的分治过程](binary_search_recur.assets/binary_search_recur.png)
在实现代码中,我们声明一个递归函数 `dfs()` 来求解问题 $f(i, j)$ 。
=== "Python"
```python title="binary_search_recur.py"
[class]{}-[func]{dfs}
[class]{}-[func]{binary_search}
```
=== "C++"
```cpp title="binary_search_recur.cpp"
[class]{}-[func]{dfs}
[class]{}-[func]{binarySearch}
```
=== "Java"
```java title="binary_search_recur.java"
[class]{binary_search_recur}-[func]{dfs}
[class]{binary_search_recur}-[func]{binarySearch}
```
=== "C#"
```csharp title="binary_search_recur.cs"
[class]{binary_search_recur}-[func]{dfs}
[class]{binary_search_recur}-[func]{binarySearch}
```
=== "Go"
```go title="binary_search_recur.go"
[class]{}-[func]{dfs}
[class]{}-[func]{binarySearch}
```
=== "Swift"
```swift title="binary_search_recur.swift"
[class]{}-[func]{dfs}
[class]{}-[func]{binarySearch}
```
=== "JS"
```javascript title="binary_search_recur.js"
[class]{}-[func]{dfs}
[class]{}-[func]{binarySearch}
```
=== "TS"
```typescript title="binary_search_recur.ts"
[class]{}-[func]{dfs}
[class]{}-[func]{binarySearch}
```
=== "Dart"
```dart title="binary_search_recur.dart"
[class]{}-[func]{dfs}
[class]{}-[func]{binarySearch}
```
=== "Rust"
```rust title="binary_search_recur.rs"
[class]{}-[func]{dfs}
[class]{}-[func]{binary_search}
```
=== "C"
```c title="binary_search_recur.c"
[class]{}-[func]{dfs}
[class]{}-[func]{binarySearch}
```
=== "Zig"
```zig title="binary_search_recur.zig"
[class]{}-[func]{dfs}
[class]{}-[func]{binarySearch}
```

Binary file not shown.

After

Width:  |  Height:  |  Size: 55 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 83 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 80 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 41 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 41 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 47 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 46 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 57 KiB

View File

@ -0,0 +1,191 @@
# 构建二叉树问题
!!! question
给定一个二叉树的前序遍历 `preorder` 和中序遍历 `inorder` ,请从中构建二叉树,返回二叉树的根节点。
![构建二叉树的示例数据](build_binary_tree_problem.assets/build_tree_example.png)
### 判断是否为分治问题
原问题定义为从 `preorder``inorder` 构建二叉树,其是一个典型的分治问题。
- **问题可以被分解**:从分治的角度切入,我们可以将原问题划分为两个子问题:构建左子树、构建右子树,加上一步操作:初始化根节点。而对于每个子树(子问题),我们仍然可以复用以上划分方法,将其划分为更小的子树(子问题),直至达到最小子问题(空子树)时终止。
- **子问题是独立的**:左子树和右子树是相互独立的,它们之间没有交集。在构建左子树时,我们只需要关注中序遍历和前序遍历中与左子树对应的部分。右子树同理。
- **子问题的解可以合并**:一旦得到了左子树和右子树(子问题的解),我们就可以将它们链接到根节点上,得到原问题的解。
### 如何划分子树
根据以上分析,这道题是可以使用分治来求解的,**但如何通过前序遍历 `preorder` 和中序遍历 `inorder` 来划分左子树和右子树呢**
根据定义,`preorder``inorder` 都可以被划分为三个部分。
- 前序遍历:`[ 根节点 | 左子树 | 右子树 ]` ,例如上图的树对应 `[ 3 | 9 | 2 1 7 ]`
- 中序遍历:`[ 左子树 | 根节点 右子树 ]` ,例如上图的树对应 `[ 9 | 3 | 1 2 7 ]`
以上图数据为例,我们可以通过下图所示的步骤得到划分结果。
1. 前序遍历的首元素 3 是根节点的值。
2. 查找根节点 3 在 `inorder` 中的索引,利用该索引可将 `inorder` 划分为 `[ 9 | 3 1 2 7 ]`
3. 根据 `inorder` 划分结果,易得左子树和右子树的节点数量分别为 1 和 3 ,从而可将 `preorder` 划分为 `[ 3 | 9 | 2 1 7 ]`
![在前序和中序遍历中划分子树](build_binary_tree_problem.assets/build_tree_preorder_inorder_division.png)
### 基于变量描述子树区间
根据以上划分方法,**我们已经得到根节点、左子树、右子树在 `preorder``inorder` 中的索引区间**。而为了描述这些索引区间,我们需要借助几个指针变量。
- 将当前树的根节点在 `preorder` 中的索引记为 $i$ 。
- 将当前树的根节点在 `inorder` 中的索引记为 $m$ 。
- 将当前树在 `inorder` 中的索引区间记为 $[l, r]$ 。
如下表所示,通过以上变量即可表示根节点在 `preorder` 中的索引,以及子树在 `inorder` 中的索引区间。
<p align="center"><id> &nbsp; 根节点和子树在前序和中序遍历中的索引 </p>
| | 根节点在 `preorder` 中的索引 | 子树在 `inorder` 中的索引区间 |
| ------ | -------------------------------- | ----------------------------- |
| 当前树 | $i$ | $[l, r]$ |
| 左子树 | $i + 1$ | $[l, m-1]$ |
| 右子树 | $i + 1 + (m - l)$ | $[m+1, r]$ |
请注意,右子树根节点索引中的 $(m-l)$ 的含义是“左子树的节点数量”,建议配合下图理解。
![根节点和左右子树的索引区间表示](build_binary_tree_problem.assets/build_tree_division_pointers.png)
### 代码实现
为了提升查询 $m$ 的效率,我们借助一个哈希表 `hmap` 来存储数组 `inorder` 中元素到索引的映射。
=== "Python"
```python title="build_tree.py"
[class]{}-[func]{dfs}
[class]{}-[func]{build_tree}
```
=== "C++"
```cpp title="build_tree.cpp"
[class]{}-[func]{dfs}
[class]{}-[func]{buildTree}
```
=== "Java"
```java title="build_tree.java"
[class]{build_tree}-[func]{dfs}
[class]{build_tree}-[func]{buildTree}
```
=== "C#"
```csharp title="build_tree.cs"
[class]{build_tree}-[func]{dfs}
[class]{build_tree}-[func]{buildTree}
```
=== "Go"
```go title="build_tree.go"
[class]{}-[func]{dfsBuildTree}
[class]{}-[func]{buildTree}
```
=== "Swift"
```swift title="build_tree.swift"
[class]{}-[func]{dfs}
[class]{}-[func]{buildTree}
```
=== "JS"
```javascript title="build_tree.js"
[class]{}-[func]{dfs}
[class]{}-[func]{buildTree}
```
=== "TS"
```typescript title="build_tree.ts"
[class]{}-[func]{dfs}
[class]{}-[func]{buildTree}
```
=== "Dart"
```dart title="build_tree.dart"
[class]{}-[func]{dfs}
[class]{}-[func]{buildTree}
```
=== "Rust"
```rust title="build_tree.rs"
[class]{}-[func]{dfs}
[class]{}-[func]{build_tree}
```
=== "C"
```c title="build_tree.c"
[class]{}-[func]{dfs}
[class]{}-[func]{buildTree}
```
=== "Zig"
```zig title="build_tree.zig"
[class]{}-[func]{dfs}
[class]{}-[func]{buildTree}
```
下图展示了构建二叉树的递归过程,各个节点是在向下“递”的过程中建立的,而各条边(即引用)是在向上“归”的过程中建立的。
=== "<1>"
![构建二叉树的递归过程](build_binary_tree_problem.assets/built_tree_step1.png)
=== "<2>"
![built_tree_step2](build_binary_tree_problem.assets/built_tree_step2.png)
=== "<3>"
![built_tree_step3](build_binary_tree_problem.assets/built_tree_step3.png)
=== "<4>"
![built_tree_step4](build_binary_tree_problem.assets/built_tree_step4.png)
=== "<5>"
![built_tree_step5](build_binary_tree_problem.assets/built_tree_step5.png)
=== "<6>"
![built_tree_step6](build_binary_tree_problem.assets/built_tree_step6.png)
=== "<7>"
![built_tree_step7](build_binary_tree_problem.assets/built_tree_step7.png)
=== "<8>"
![built_tree_step8](build_binary_tree_problem.assets/built_tree_step8.png)
=== "<9>"
![built_tree_step9](build_binary_tree_problem.assets/built_tree_step9.png)
每个递归函数内的前序遍历 `preorder` 和中序遍历 `inorder` 的划分结果如下图所示。
![每个递归函数中的划分结果](build_binary_tree_problem.assets/built_tree_overall.png)
设树的节点数量为 $n$ ,初始化每一个节点(执行一个递归函数 `dfs()` )使用 $O(1)$ 时间。**因此总体时间复杂度为 $O(n)$** 。
哈希表存储 `inorder` 元素到索引的映射,空间复杂度为 $O(n)$ 。最差情况下,即二叉树退化为链表时,递归深度达到 $n$ ,使用 $O(n)$ 的栈帧空间。**因此总体空间复杂度为 $O(n)$** 。

Binary file not shown.

After

Width:  |  Height:  |  Size: 79 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 87 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB

View File

@ -0,0 +1,91 @@
# 分治算法
「分治 divide and conquer」全称分而治之是一种非常重要且常见的算法策略。分治通常基于递归实现包括“分”和“治”两个步骤。
1. **分(划分阶段)**:递归地将原问题分解为两个或多个子问题,直至到达最小子问题时终止。
2. **治(合并阶段)**:从已知解的最小子问题开始,从底至顶地将子问题的解进行合并,从而构建出原问题的解。
如下图所示,“归并排序”是分治策略的典型应用之一。
1. **分**:递归地将原数组(原问题)划分为两个子数组(子问题),直到子数组只剩一个元素(最小子问题)。
2. **治**:从底至顶地将有序的子数组(子问题的解)进行合并,从而得到有序的原数组(原问题的解)。
![归并排序的分治策略](divide_and_conquer.assets/divide_and_conquer_merge_sort.png)
## 如何判断分治问题
一个问题是否适合使用分治解决,通常可以参考以下几个判断依据。
1. **问题可以被分解**:原问题可以被分解成规模更小、类似的子问题,以及能够以相同方式递归地进行划分。
2. **子问题是独立的**:子问题之间是没有重叠的,互相没有依赖,可以被独立解决。
3. **子问题的解可以被合并**:原问题的解通过合并子问题的解得来。
显然,归并排序是满足以上三条判断依据的。
1. **问题可以被分解**:递归地将数组(原问题)划分为两个子数组(子问题)。
2. **子问题是独立的**:每个子数组都可以独立地进行排序(子问题可以独立进行求解)。
3. **子问题的解可以被合并**:两个有序子数组(子问题的解)可以被合并为一个有序数组(原问题的解)。
## 通过分治提升效率
分治不仅可以有效地解决算法问题,**往往还可以带来算法效率的提升**。在排序算法中,快速排序、归并排序、堆排序相较于选择、冒泡、插入排序更快,就是因为它们应用了分治策略。
那么,我们不禁发问:**为什么分治可以提升算法效率,其底层逻辑是什么**?换句话说,将大问题分解为多个子问题、解决子问题、将子问题的解合并为原问题的解,这几步的效率为什么比直接解决原问题的效率更高?这个问题可以从操作数量和并行计算两方面来讨论。
### 操作数量优化
以“冒泡排序”为例,其处理一个长度为 $n$ 的数组需要 $O(n^2)$ 时间。假设我们按照下图所示的方式,将数组从中点分为两个子数组,则划分需要 $O(n)$ 时间,排序每个子数组需要 $O((n / 2)^2)$ 时间,合并两个子数组需要 $O(n)$ 时间,总体时间复杂度为:
$$
O(n + (\frac{n}{2})^2 \times 2 + n) = O(\frac{n^2}{2} + 2n)
$$
![划分数组前后的冒泡排序](divide_and_conquer.assets/divide_and_conquer_bubble_sort.png)
接下来,我们计算以下不等式,其左边和右边分别为划分前和划分后的操作总数:
$$
\begin{aligned}
n^2 & > \frac{n^2}{2} + 2n \newline
n^2 - \frac{n^2}{2} - 2n & > 0 \newline
n(n - 4) & > 0
\end{aligned}
$$
**这意味着当 $n > 4$ 时,划分后的操作数量更少,排序效率应该更高**。请注意,划分后的时间复杂度仍然是平方阶 $O(n^2)$ ,只是复杂度中的常数项变小了。
进一步想,**如果我们把子数组不断地再从中点划分为两个子数组**,直至子数组只剩一个元素时停止划分呢?这种思路实际上就是“归并排序”,时间复杂度为 $O(n \log n)$ 。
再思考,**如果我们多设置几个划分点**,将原数组平均划分为 $k$ 个子数组呢?这种情况与“桶排序”非常类似,它非常适合排序海量数据,理论上时间复杂度可以达到 $O(n + k)$ 。
### 并行计算优化
我们知道,分治生成的子问题是相互独立的,**因此通常可以并行解决**。也就是说,分治不仅可以降低算法的时间复杂度,**还有利于操作系统的并行优化**。
并行优化在多核或多处理器的环境中尤其有效,因为系统可以同时处理多个子问题,更加充分地利用计算资源,从而显著减少总体的运行时间。
比如在下图所示的“桶排序”中,我们将海量的数据平均分配到各个桶中,则可所有桶的排序任务分散到各个计算单元,完成后再进行结果合并。
![桶排序的并行计算](divide_and_conquer.assets/divide_and_conquer_parallel_computing.png)
## 分治常见应用
一方面,分治可以用来解决许多经典算法问题。
- **寻找最近点对**:该算法首先将点集分成两部分,然后分别找出两部分中的最近点对,最后再找出跨越两部分的最近点对。
- **大整数乘法**:例如 Karatsuba 算法,它是将大整数乘法分解为几个较小的整数的乘法和加法。
- **矩阵乘法**:例如 Strassen 算法,它是将大矩阵乘法分解为多个小矩阵的乘法和加法。
- **汉诺塔问题**:汉诺塔问题可以视为典型的分治策略,通过递归解决。
- **求解逆序对**:在一个序列中,如果前面的数字大于后面的数字,那么这两个数字构成一个逆序对。求解逆序对问题可以通过分治的思想,借助归并排序进行求解。
另一方面,分治在算法和数据结构的设计中应用非常广泛。
- **二分查找**:二分查找是将有序数组从中点索引分为两部分,然后根据目标值与中间元素值比较结果,决定排除哪一半区间,然后在剩余区间执行相同的二分操作。
- **归并排序**:文章开头已介绍,不再赘述。
- **快速排序**:快速排序是选取一个基准值,然后把数组分为两个子数组,一个子数组的元素比基准值小,另一子数组的元素比基准值大,然后再对这两部分进行相同的划分操作,直至子数组只剩下一个元素。
- **桶排序**:桶排序的基本思想是将数据分散到多个桶,然后对每个桶内的元素进行排序,最后将各个桶的元素依次取出,从而得到一个有序数组。
- **树**例如二叉搜索树、AVL 树、红黑树、B 树、B+ 树等,它们的查找、插入和删除等操作都可以视为分治的应用。
- **堆**:堆是一种特殊的完全二叉树,其各种操作,如插入、删除和堆化,实际上都隐含了分治的思想。
- **哈希表**:虽然哈希表来并不直接应用分治,但某些哈希冲突解决策略间接应用了分治策略,例如,链式地址中的长链表会被转化为红黑树,以提升查询效率。
可以看出,**分治是一种“润物细无声”的算法思想**,隐含在各种算法与数据结构之中。

Binary file not shown.

After

Width:  |  Height:  |  Size: 93 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 27 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 36 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 50 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 38 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 40 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 47 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 61 KiB

View File

@ -0,0 +1,213 @@
# 汉诺塔问题
在归并排序和构建二叉树中,我们都是将原问题分解为两个规模为原问题一半的子问题。然而对于汉诺塔问题,我们采用不同的分解策略。
!!! question
给定三根柱子,记为 `A``B``C` 。起始状态下,柱子 `A` 上套着 $n$ 个圆盘,它们从上到下按照从小到大的顺序排列。我们的任务是要把这 $n$ 个圆盘移到柱子 `C` 上,并保持它们的原有顺序不变。在移动圆盘的过程中,需要遵守以下规则。
1. 圆盘只能从一个柱子顶部拿出,从另一个柱子顶部放入。
2. 每次只能移动一个圆盘。
3. 小圆盘必须时刻位于大圆盘之上。
![汉诺塔问题示例](hanota_problem.assets/hanota_example.png)
**我们将规模为 $i$ 的汉诺塔问题记做 $f(i)$** 。例如 $f(3)$ 代表将 $3$ 个圆盘从 `A` 移动至 `C` 的汉诺塔问题。
### 考虑基本情况
如下图所示,对于问题 $f(1)$ ,即当只有一个圆盘时,我们将它直接从 `A` 移动至 `C` 即可。
=== "<1>"
![规模为 1 问题的解](hanota_problem.assets/hanota_f1_step1.png)
=== "<2>"
![hanota_f1_step2](hanota_problem.assets/hanota_f1_step2.png)
如下图所示,对于问题 $f(2)$ ,即当有两个圆盘时,**由于要时刻满足小圆盘在大圆盘之上,因此需要借助 `B` 来完成移动**。
1. 先将上面的小圆盘从 `A` 移至 `B`
2. 再将大圆盘从 `A` 移至 `C`
3. 最后将小圆盘从 `B` 移至 `C`
=== "<1>"
![规模为 2 问题的解](hanota_problem.assets/hanota_f2_step1.png)
=== "<2>"
![hanota_f2_step2](hanota_problem.assets/hanota_f2_step2.png)
=== "<3>"
![hanota_f2_step3](hanota_problem.assets/hanota_f2_step3.png)
=== "<4>"
![hanota_f2_step4](hanota_problem.assets/hanota_f2_step4.png)
解决问题 $f(2)$ 的过程可总结为:**将两个圆盘借助 `B``A` 移至 `C`** 。其中,`C` 称为目标柱、`B` 称为缓冲柱。
### 子问题分解
对于问题 $f(3)$ ,即当有三个圆盘时,情况变得稍微复杂了一些。
因为已知 $f(1)$ 和 $f(2)$ 的解,所以我们可从分治角度思考,**将 `A` 顶部的两个圆盘看做一个整体**,执行下图所示的步骤。这样三个圆盘就被顺利地从 `A` 移动至 `C` 了。
1.`B` 为目标柱、`C` 为缓冲柱,将两个圆盘从 `A` 移动至 `B`
2.`A` 中剩余的一个圆盘从 `A` 直接移动至 `C`
3.`C` 为目标柱、`A` 为缓冲柱,将两个圆盘从 `B` 移动至 `C`
=== "<1>"
![规模为 3 问题的解](hanota_problem.assets/hanota_f3_step1.png)
=== "<2>"
![hanota_f3_step2](hanota_problem.assets/hanota_f3_step2.png)
=== "<3>"
![hanota_f3_step3](hanota_problem.assets/hanota_f3_step3.png)
=== "<4>"
![hanota_f3_step4](hanota_problem.assets/hanota_f3_step4.png)
本质上看,**我们将问题 $f(3)$ 划分为两个子问题 $f(2)$ 和子问题 $f(1)$** 。按顺序解决这三个子问题之后,原问题随之得到解决。这说明子问题是独立的,而且解是可以合并的。
至此,我们可总结出下图所示的汉诺塔问题的分治策略:将原问题 $f(n)$ 划分为两个子问题 $f(n-1)$ 和一个子问题 $f(1)$ ,并按照以下顺序解决这三个子问题。
1. 将 $n-1$ 个圆盘借助 `C``A` 移至 `B`
2. 将剩余 $1$ 个圆盘从 `A` 直接移至 `C`
3. 将 $n-1$ 个圆盘借助 `A``B` 移至 `C`
对于这两个子问题 $f(n-1)$ **可以通过相同的方式进行递归划分**,直至达到最小子问题 $f(1)$ 。而 $f(1)$ 的解是已知的,只需一次移动操作即可。
![汉诺塔问题的分治策略](hanota_problem.assets/hanota_divide_and_conquer.png)
### 代码实现
在代码中,我们声明一个递归函数 `dfs(i, src, buf, tar)` ,它的作用是将柱 `src` 顶部的 $i$ 个圆盘借助缓冲柱 `buf` 移动至目标柱 `tar`
=== "Python"
```python title="hanota.py"
[class]{}-[func]{move}
[class]{}-[func]{dfs}
[class]{}-[func]{solve_hanota}
```
=== "C++"
```cpp title="hanota.cpp"
[class]{}-[func]{move}
[class]{}-[func]{dfs}
[class]{}-[func]{solveHanota}
```
=== "Java"
```java title="hanota.java"
[class]{hanota}-[func]{move}
[class]{hanota}-[func]{dfs}
[class]{hanota}-[func]{solveHanota}
```
=== "C#"
```csharp title="hanota.cs"
[class]{hanota}-[func]{move}
[class]{hanota}-[func]{dfs}
[class]{hanota}-[func]{solveHanota}
```
=== "Go"
```go title="hanota.go"
[class]{}-[func]{move}
[class]{}-[func]{dfsHanota}
[class]{}-[func]{solveHanota}
```
=== "Swift"
```swift title="hanota.swift"
[class]{}-[func]{move}
[class]{}-[func]{dfs}
[class]{}-[func]{solveHanota}
```
=== "JS"
```javascript title="hanota.js"
[class]{}-[func]{move}
[class]{}-[func]{dfs}
[class]{}-[func]{solveHanota}
```
=== "TS"
```typescript title="hanota.ts"
[class]{}-[func]{move}
[class]{}-[func]{dfs}
[class]{}-[func]{solveHanota}
```
=== "Dart"
```dart title="hanota.dart"
[class]{}-[func]{move}
[class]{}-[func]{dfs}
[class]{}-[func]{solveHanota}
```
=== "Rust"
```rust title="hanota.rs"
[class]{}-[func]{move_pan}
[class]{}-[func]{dfs}
[class]{}-[func]{solve_hanota}
```
=== "C"
```c title="hanota.c"
[class]{}-[func]{move}
[class]{}-[func]{dfs}
[class]{}-[func]{solveHanota}
```
=== "Zig"
```zig title="hanota.zig"
[class]{}-[func]{move}
[class]{}-[func]{dfs}
[class]{}-[func]{solveHanota}
```
如下图所示,汉诺塔问题形成一个高度为 $n$ 的递归树,每个节点代表一个子问题、对应一个开启的 `dfs()` 函数,**因此时间复杂度为 $O(2^n)$ ,空间复杂度为 $O(n)$** 。
![汉诺塔问题的递归树](hanota_problem.assets/hanota_recursive_tree.png)
!!! quote
汉诺塔问题源自一种古老的传说故事。在古印度的一个寺庙里,僧侣们有三根高大的钻石柱子,以及 $64$ 个大小不一的金圆盘。僧侣们不断地移动原盘,他们相信在最后一个圆盘被正确放置的那一刻,这个世界就会结束。
然而,即使僧侣们每秒钟移动一次,总共需要大约 $2^{64} \approx 1.84×10^{19}$ 秒,合约 $5850$ 亿年,远远超过了现在对宇宙年龄的估计。所以,倘若这个传说是真的,我们应该不需要担心世界末日的到来。

View File

@ -0,0 +1,13 @@
# 分治
<div class="center-table" markdown>
![分治](../assets/covers/chapter_divide_and_conquer.jpg){ width="600" }
</div>
!!! abstract
难题被逐层拆解,每一次的拆解都使它变得更为简单。
分而治之揭示了一个重要的事实:从简单做起,一切都不再复杂。

View File

@ -0,0 +1,11 @@
# 小结
- 分治算法是一种常见的算法设计策略,包括分(划分)和治(合并)两个阶段,通常基于递归实现。
- 判断是否是分治算法问题的依据包括:问题能否被分解、子问题是否独立、子问题是否可以被合并。
- 归并排序是分治策略的典型应用,其递归地将数组划分为等长的两个子数组,直到只剩一个元素时开始逐层合并,从而完成排序。
- 引入分治策略往往可以带来算法效率的提升。一方面,分治策略减少了操作数量;另一方面,分治后有利于系统的并行优化。
- 分治既可以解决许多算法问题,也广泛应用于数据结构与算法设计中,处处可见其身影。
- 相较于暴力搜索,自适应搜索效率更高。时间复杂度为 $O(\log n)$ 的搜索算法通常都是基于分治策略实现的。
- 二分查找是分治策略的另一个典型应用,它不包含将子问题的解进行合并的步骤。我们可以通过递归分治实现二分查找。
- 在构建二叉树问题中,构建树(原问题)可以被划分为构建左子树和右子树(子问题),其可以通过划分前序遍历和中序遍历的索引区间来实现。
- 在汉诺塔问题中,一个规模为 $n$ 的问题可以被划分为两个规模为 $n-1$ 的子问题和一个规模为 $1$ 的子问题。按顺序解决这三个子问题后,原问题随之得到解决。