mirror of
https://github.com/krahets/hello-algo.git
synced 2025-12-12 09:32:02 +08:00
build
This commit is contained in:
1584
build/chapter_tree/avl_tree.md
Executable file
1584
build/chapter_tree/avl_tree.md
Executable file
File diff suppressed because it is too large
Load Diff
1083
build/chapter_tree/binary_search_tree.md
Executable file
1083
build/chapter_tree/binary_search_tree.md
Executable file
File diff suppressed because it is too large
Load Diff
578
build/chapter_tree/binary_tree.md
Normal file
578
build/chapter_tree/binary_tree.md
Normal file
@@ -0,0 +1,578 @@
|
||||
---
|
||||
comments: true
|
||||
---
|
||||
|
||||
# 7.1. 二叉树
|
||||
|
||||
「二叉树 Binary Tree」是一种非线性数据结构,代表着祖先与后代之间的派生关系,体现着“一分为二”的分治逻辑。类似于链表,二叉树也是以结点为单位存储的,结点包含「值」和两个「指针」。
|
||||
|
||||
=== "Java"
|
||||
|
||||
```java title=""
|
||||
/* 链表结点类 */
|
||||
class TreeNode {
|
||||
int val; // 结点值
|
||||
TreeNode left; // 左子结点指针
|
||||
TreeNode right; // 右子结点指针
|
||||
TreeNode(int x) { val = x; }
|
||||
}
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title=""
|
||||
/* 链表结点结构体 */
|
||||
struct TreeNode {
|
||||
int val; // 结点值
|
||||
TreeNode *left; // 左子结点指针
|
||||
TreeNode *right; // 右子结点指针
|
||||
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
|
||||
};
|
||||
```
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title=""
|
||||
""" 链表结点类 """
|
||||
class TreeNode:
|
||||
def __init__(self, val=None, left=None, right=None):
|
||||
self.val = val # 结点值
|
||||
self.left = left # 左子结点指针
|
||||
self.right = right # 右子结点指针
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title=""
|
||||
/* 链表结点类 */
|
||||
type TreeNode struct {
|
||||
Val int
|
||||
Left *TreeNode
|
||||
Right *TreeNode
|
||||
}
|
||||
/* 结点初始化方法 */
|
||||
func NewTreeNode(v int) *TreeNode {
|
||||
return &TreeNode{
|
||||
Left: nil,
|
||||
Right: nil,
|
||||
Val: v,
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
|
||||
```js title=""
|
||||
/* 链表结点类 */
|
||||
function TreeNode(val, left, right) {
|
||||
this.val = (val === undefined ? 0 : val); // 结点值
|
||||
this.left = (left === undefined ? null : left); // 左子结点指针
|
||||
this.right = (right === undefined ? null : right); // 右子结点指针
|
||||
}
|
||||
```
|
||||
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript title=""
|
||||
/* 链表结点类 */
|
||||
class TreeNode {
|
||||
val: number;
|
||||
left: TreeNode | null;
|
||||
right: TreeNode | null;
|
||||
|
||||
constructor(val?: number, left?: TreeNode | null, right?: TreeNode | null) {
|
||||
this.val = val === undefined ? 0 : val; // 结点值
|
||||
this.left = left === undefined ? null : left; // 左子结点指针
|
||||
this.right = right === undefined ? null : right; // 右子结点指针
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
=== "C"
|
||||
|
||||
```c title=""
|
||||
|
||||
```
|
||||
|
||||
=== "C#"
|
||||
|
||||
```csharp title=""
|
||||
/* 链表结点类 */
|
||||
class TreeNode {
|
||||
int val; // 结点值
|
||||
TreeNode? left; // 左子结点指针
|
||||
TreeNode? right; // 右子结点指针
|
||||
TreeNode(int x) { val = x; }
|
||||
}
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title=""
|
||||
/* 链表结点类 */
|
||||
class TreeNode {
|
||||
var val: Int // 结点值
|
||||
var left: TreeNode? // 左子结点指针
|
||||
var right: TreeNode? // 右子结点指针
|
||||
|
||||
init(x: Int) {
|
||||
val = x
|
||||
}
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
||||
```zig title=""
|
||||
|
||||
```
|
||||
|
||||
结点的两个指针分别指向「左子结点 Left Child Node」和「右子结点 Right Child Node」,并且称该结点为两个子结点的「父结点 Parent Node」。给定二叉树某结点,将左子结点以下的树称为该结点的「左子树 Left Subtree」,右子树同理。
|
||||
|
||||
除了叶结点外,每个结点都有子结点和子树。例如,若将下图的「结点 2」看作父结点,那么其左子结点和右子结点分别为「结点 4」和「结点 5」,左子树和右子树分别为「结点 4 及其以下结点形成的树」和「结点 5 及其以下结点形成的树」。
|
||||
|
||||

|
||||
|
||||
<p align="center"> Fig. 子结点与子树 </p>
|
||||
|
||||
## 7.1.1. 二叉树常见术语
|
||||
|
||||
二叉树的术语较多,建议尽量理解并记住。后续可能遗忘,可以在需要使用时回来查看确认。
|
||||
|
||||
- 「根结点 Root Node」:二叉树最顶层的结点,其没有父结点;
|
||||
- 「叶结点 Leaf Node」:没有子结点的结点,其两个指针都指向 $\text{null}$ ;
|
||||
- 结点所处「层 Level」:从顶至底依次增加,根结点所处层为 1 ;
|
||||
- 结点「度 Degree」:结点的子结点数量。二叉树中,度的范围是 0, 1, 2 ;
|
||||
- 「边 Edge」:连接两个结点的边,即结点指针;
|
||||
- 二叉树「高度」:二叉树中根结点到最远叶结点走过边的数量;
|
||||
- 结点「深度 Depth」 :根结点到该结点走过边的数量;
|
||||
- 结点「高度 Height」:最远叶结点到该结点走过边的数量;
|
||||
|
||||

|
||||
|
||||
<p align="center"> Fig. 二叉树的常见术语 </p>
|
||||
|
||||
!!! tip "高度与深度的定义"
|
||||
|
||||
值得注意,我们通常将「高度」和「深度」定义为“走过边的数量”,而有些题目或教材会将其定义为“走过结点的数量”,此时高度或深度都需要 + 1 。
|
||||
|
||||
## 7.1.2. 二叉树基本操作
|
||||
|
||||
**初始化二叉树**。与链表类似,先初始化结点,再构建引用指向(即指针)。
|
||||
|
||||
=== "Java"
|
||||
|
||||
```java title="binary_tree.java"
|
||||
// 初始化结点
|
||||
TreeNode n1 = new TreeNode(1);
|
||||
TreeNode n2 = new TreeNode(2);
|
||||
TreeNode n3 = new TreeNode(3);
|
||||
TreeNode n4 = new TreeNode(4);
|
||||
TreeNode n5 = new TreeNode(5);
|
||||
// 构建引用指向(即指针)
|
||||
n1.left = n2;
|
||||
n1.right = n3;
|
||||
n2.left = n4;
|
||||
n2.right = n5;
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title="binary_tree.cpp"
|
||||
/* 初始化二叉树 */
|
||||
// 初始化结点
|
||||
TreeNode* n1 = new TreeNode(1);
|
||||
TreeNode* n2 = new TreeNode(2);
|
||||
TreeNode* n3 = new TreeNode(3);
|
||||
TreeNode* n4 = new TreeNode(4);
|
||||
TreeNode* n5 = new TreeNode(5);
|
||||
// 构建引用指向(即指针)
|
||||
n1->left = n2;
|
||||
n1->right = n3;
|
||||
n2->left = n4;
|
||||
n2->right = n5;
|
||||
```
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title="binary_tree.py"
|
||||
""" 初始化二叉树 """
|
||||
# 初始化节点
|
||||
n1 = TreeNode(val=1)
|
||||
n2 = TreeNode(val=2)
|
||||
n3 = TreeNode(val=3)
|
||||
n4 = TreeNode(val=4)
|
||||
n5 = TreeNode(val=5)
|
||||
# 构建引用指向(即指针)
|
||||
n1.left = n2
|
||||
n1.right = n3
|
||||
n2.left = n4
|
||||
n2.right = n5
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title="binary_tree.go"
|
||||
/* 初始化二叉树 */
|
||||
// 初始化结点
|
||||
n1 := NewTreeNode(1)
|
||||
n2 := NewTreeNode(2)
|
||||
n3 := NewTreeNode(3)
|
||||
n4 := NewTreeNode(4)
|
||||
n5 := NewTreeNode(5)
|
||||
// 构建引用指向(即指针)
|
||||
n1.Left = n2
|
||||
n1.Right = n3
|
||||
n2.Left = n4
|
||||
n2.Right = n5
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
|
||||
```js title="binary_tree.js"
|
||||
/* 初始化二叉树 */
|
||||
// 初始化结点
|
||||
let n1 = new TreeNode(1),
|
||||
n2 = new TreeNode(2),
|
||||
n3 = new TreeNode(3),
|
||||
n4 = new TreeNode(4),
|
||||
n5 = new TreeNode(5);
|
||||
// 构建引用指向(即指针)
|
||||
n1.left = n2;
|
||||
n1.right = n3;
|
||||
n2.left = n4;
|
||||
n2.right = n5;
|
||||
```
|
||||
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript title="binary_tree.ts"
|
||||
/* 初始化二叉树 */
|
||||
// 初始化结点
|
||||
let n1 = new TreeNode(1),
|
||||
n2 = new TreeNode(2),
|
||||
n3 = new TreeNode(3),
|
||||
n4 = new TreeNode(4),
|
||||
n5 = new TreeNode(5);
|
||||
// 构建引用指向(即指针)
|
||||
n1.left = n2;
|
||||
n1.right = n3;
|
||||
n2.left = n4;
|
||||
n2.right = n5;
|
||||
```
|
||||
|
||||
=== "C"
|
||||
|
||||
```c title="binary_tree.c"
|
||||
|
||||
```
|
||||
|
||||
=== "C#"
|
||||
|
||||
```csharp title="binary_tree.cs"
|
||||
/* 初始化二叉树 */
|
||||
// 初始化结点
|
||||
TreeNode n1 = new TreeNode(1);
|
||||
TreeNode n2 = new TreeNode(2);
|
||||
TreeNode n3 = new TreeNode(3);
|
||||
TreeNode n4 = new TreeNode(4);
|
||||
TreeNode n5 = new TreeNode(5);
|
||||
// 构建引用指向(即指针)
|
||||
n1.left = n2;
|
||||
n1.right = n3;
|
||||
n2.left = n4;
|
||||
n2.right = n5;
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title="binary_tree.swift"
|
||||
// 初始化结点
|
||||
let n1 = TreeNode(x: 1)
|
||||
let n2 = TreeNode(x: 2)
|
||||
let n3 = TreeNode(x: 3)
|
||||
let n4 = TreeNode(x: 4)
|
||||
let n5 = TreeNode(x: 5)
|
||||
// 构建引用指向(即指针)
|
||||
n1.left = n2
|
||||
n1.right = n3
|
||||
n2.left = n4
|
||||
n2.right = n5
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
||||
```zig title="binary_tree.zig"
|
||||
|
||||
```
|
||||
|
||||
**插入与删除结点**。与链表类似,插入与删除结点都可以通过修改指针实现。
|
||||
|
||||

|
||||
|
||||
<p align="center"> Fig. 在二叉树中插入与删除结点 </p>
|
||||
|
||||
=== "Java"
|
||||
|
||||
```java title="binary_tree.java"
|
||||
TreeNode P = new TreeNode(0);
|
||||
// 在 n1 -> n2 中间插入结点 P
|
||||
n1.left = P;
|
||||
P.left = n2;
|
||||
// 删除结点 P
|
||||
n1.left = n2;
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title="binary_tree.cpp"
|
||||
/* 插入与删除结点 */
|
||||
TreeNode* P = new TreeNode(0);
|
||||
// 在 n1 -> n2 中间插入结点 P
|
||||
n1->left = P;
|
||||
P->left = n2;
|
||||
// 删除结点 P
|
||||
n1->left = n2;
|
||||
```
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title="binary_tree.py"
|
||||
""" 插入与删除结点 """
|
||||
p = TreeNode(0)
|
||||
# 在 n1 -> n2 中间插入结点 P
|
||||
n1.left = p
|
||||
p.left = n2
|
||||
# 删除节点 P
|
||||
n1.left = n2
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title="binary_tree.go"
|
||||
/* 插入与删除结点 */
|
||||
// 在 n1 -> n2 中间插入结点 P
|
||||
p := NewTreeNode(0)
|
||||
n1.Left = p
|
||||
p.Left = n2
|
||||
// 删除结点 P
|
||||
n1.Left = n2
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
|
||||
```js title="binary_tree.js"
|
||||
/* 插入与删除结点 */
|
||||
let P = new TreeNode(0);
|
||||
// 在 n1 -> n2 中间插入结点 P
|
||||
n1.left = P;
|
||||
P.left = n2;
|
||||
// 删除结点 P
|
||||
n1.left = n2;
|
||||
```
|
||||
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript title="binary_tree.ts"
|
||||
/* 插入与删除结点 */
|
||||
const P = new TreeNode(0);
|
||||
// 在 n1 -> n2 中间插入结点 P
|
||||
n1.left = P;
|
||||
P.left = n2;
|
||||
// 删除结点 P
|
||||
n1.left = n2;
|
||||
```
|
||||
|
||||
=== "C"
|
||||
|
||||
```c title="binary_tree.c"
|
||||
|
||||
```
|
||||
|
||||
=== "C#"
|
||||
|
||||
```csharp title="binary_tree.cs"
|
||||
/* 插入与删除结点 */
|
||||
TreeNode P = new TreeNode(0);
|
||||
// 在 n1 -> n2 中间插入结点 P
|
||||
n1.left = P;
|
||||
P.left = n2;
|
||||
// 删除结点 P
|
||||
n1.left = n2;
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title="binary_tree.swift"
|
||||
let P = TreeNode(x: 0)
|
||||
// 在 n1 -> n2 中间插入结点 P
|
||||
n1.left = P
|
||||
P.left = n2
|
||||
// 删除结点 P
|
||||
n1.left = n2
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
||||
```zig title="binary_tree.zig"
|
||||
|
||||
```
|
||||
|
||||
!!! note
|
||||
|
||||
插入结点会改变二叉树的原有逻辑结构,删除结点往往意味着删除了该结点的所有子树。因此,二叉树中的插入与删除一般都是由一套操作配合完成的,这样才能实现有意义的操作。
|
||||
|
||||
## 7.1.3. 常见二叉树类型
|
||||
|
||||
### 完美二叉树
|
||||
|
||||
「完美二叉树 Perfect Binary Tree」的所有层的结点都被完全填满。在完美二叉树中,所有结点的度 = 2 ;若树高度 $= h$ ,则结点总数 $= 2^{h+1} - 1$ ,呈标准的指数级关系,反映着自然界中常见的细胞分裂。
|
||||
|
||||
!!! tip
|
||||
|
||||
在中文社区中,完美二叉树常被称为「满二叉树」,请注意与完满二叉树区分。
|
||||
|
||||

|
||||
|
||||
### 完全二叉树
|
||||
|
||||
「完全二叉树 Complete Binary Tree」只有最底层的结点未被填满,且最底层结点尽量靠左填充。
|
||||
|
||||
**完全二叉树非常适合用数组来表示**。如果按照层序遍历序列的顺序来存储,那么空结点 `null` 一定全部出现在序列的尾部,因此我们就可以不用存储这些 null 了。
|
||||
|
||||

|
||||
|
||||
### 完满二叉树
|
||||
|
||||
「完满二叉树 Full Binary Tree」除了叶结点之外,其余所有结点都有两个子结点。
|
||||
|
||||

|
||||
|
||||
### 平衡二叉树
|
||||
|
||||
「平衡二叉树 Balanced Binary Tree」中任意结点的左子树和右子树的高度之差的绝对值 $\leq 1$ 。
|
||||
|
||||

|
||||
|
||||
## 7.1.4. 二叉树的退化
|
||||
|
||||
当二叉树的每层的结点都被填满时,达到「完美二叉树」;而当所有结点都偏向一边时,二叉树退化为「链表」。
|
||||
|
||||
- 完美二叉树是一个二叉树的“最佳状态”,可以完全发挥出二叉树“分治”的优势;
|
||||
- 链表则是另一个极端,各项操作都变为线性操作,时间复杂度退化至 $O(n)$ ;
|
||||
|
||||

|
||||
|
||||
<p align="center"> Fig. 二叉树的最佳和最差结构 </p>
|
||||
|
||||
如下表所示,在最佳和最差结构下,二叉树的叶结点数量、结点总数、高度等达到极大或极小值。
|
||||
|
||||
<div class="center-table" markdown>
|
||||
|
||||
| | 完美二叉树 | 链表 |
|
||||
| ----------------------------- | ---------- | ---------- |
|
||||
| 第 $i$ 层的结点数量 | $2^{i-1}$ | $1$ |
|
||||
| 树的高度为 $h$ 时的叶结点数量 | $2^h$ | $1$ |
|
||||
| 树的高度为 $h$ 时的结点总数 | $2^{h+1} - 1$ | $h + 1$ |
|
||||
| 树的结点总数为 $n$ 时的高度 | $\log_2 (n+1) - 1$ | $n - 1$ |
|
||||
|
||||
</div>
|
||||
|
||||
## 7.1.5. 二叉树表示方式 *
|
||||
|
||||
我们一般使用二叉树的「链表表示」,即存储单位为结点 `TreeNode` ,结点之间通过指针(引用)相连接。本文前述示例代码展示了二叉树在链表表示下的各项基本操作。
|
||||
|
||||
那能否可以用「数组表示」二叉树呢?答案是肯定的。先来分析一个简单案例,给定一个「完美二叉树」,将结点按照层序遍历的顺序编号(从 0 开始),那么可以推导得出父结点索引与子结点索引之间的「映射公式」:**设结点的索引为 $i$ ,则该结点的左子结点索引为 $2i + 1$ 、右子结点索引为 $2i + 2$** 。
|
||||
|
||||
**本质上,映射公式的作用就是链表中的指针**。对于层序遍历序列中的任意结点,我们都可以使用映射公式来访问子结点。因此,可以直接使用层序遍历序列(即数组)来表示完美二叉树。
|
||||
|
||||

|
||||
|
||||
然而,完美二叉树只是个例,二叉树中间层往往存在许多空结点(即 `null` ),而层序遍历序列并不包含这些空结点,并且我们无法单凭序列来猜测空结点的数量和分布位置,**即理论上存在许多种二叉树都符合该层序遍历序列**。显然,这种情况无法使用数组来存储二叉树。
|
||||
|
||||

|
||||
|
||||
为了解决此问题,考虑按照完美二叉树的形式来表示所有二叉树,**即在序列中使用特殊符号来显式地表示“空位”**。如下图所示,这样处理后,序列(数组)就可以唯一表示二叉树了。
|
||||
|
||||
=== "Java"
|
||||
|
||||
```java title=""
|
||||
/* 二叉树的数组表示 */
|
||||
// 使用 int 的包装类 Integer ,就可以使用 null 来标记空位
|
||||
Integer[] tree = { 1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15 };
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title=""
|
||||
/* 二叉树的数组表示 */
|
||||
// 为了符合数据类型为 int ,使用 int 最大值标记空位
|
||||
// 该方法的使用前提是没有结点的值 = INT_MAX
|
||||
vector<int> tree = { 1, 2, 3, 4, INT_MAX, 6, 7, 8, 9, INT_MAX, INT_MAX, 12, INT_MAX, INT_MAX, 15 };
|
||||
```
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title=""
|
||||
""" 二叉树的数组表示 """
|
||||
# 直接使用 None 来表示空位
|
||||
tree = [1, 2, 3, 4, None, 6, 7, 8, 9, None, None, 12, None, None, 15]
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title=""
|
||||
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
|
||||
```js title=""
|
||||
/* 二叉树的数组表示 */
|
||||
// 直接使用 null 来表示空位
|
||||
let tree = [1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15];
|
||||
```
|
||||
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript title=""
|
||||
/* 二叉树的数组表示 */
|
||||
// 直接使用 null 来表示空位
|
||||
let tree: (number | null)[] = [1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15];
|
||||
```
|
||||
|
||||
=== "C"
|
||||
|
||||
```c title=""
|
||||
|
||||
```
|
||||
|
||||
=== "C#"
|
||||
|
||||
```csharp title=""
|
||||
/* 二叉树的数组表示 */
|
||||
// 使用 int? 可空类型 ,就可以使用 null 来标记空位
|
||||
int?[] tree = { 1, 2, 3, 4, null, 6, 7, 8, 9, null, null, 12, null, null, 15 };
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title=""
|
||||
/* 二叉树的数组表示 */
|
||||
// 使用 Int? 可空类型 ,就可以使用 nil 来标记空位
|
||||
let tree: [Int?] = [1, 2, 3, 4, nil, 6, 7, 8, 9, nil, nil, 12, nil, nil, 15]
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
||||
```zig title=""
|
||||
|
||||
```
|
||||
|
||||

|
||||
|
||||
回顾「完全二叉树」的定义,其只有最底层有空结点,并且最底层的结点尽量靠左,因而所有空结点都一定出现在层序遍历序列的末尾。**因为我们先验地确定了空位的位置,所以在使用数组表示完全二叉树时,可以省略存储“空位”**。因此,完全二叉树非常适合使用数组来表示。
|
||||
|
||||

|
||||
|
||||
数组表示有两个优点: 一是不需要存储指针,节省空间;二是可以随机访问结点。然而,当二叉树中的“空位”很多时,数组中只包含很少结点的数据,空间利用率很低。
|
||||
520
build/chapter_tree/binary_tree_traversal.md
Executable file
520
build/chapter_tree/binary_tree_traversal.md
Executable file
@@ -0,0 +1,520 @@
|
||||
---
|
||||
comments: true
|
||||
---
|
||||
|
||||
# 7.2. 二叉树遍历
|
||||
|
||||
非线性数据结构的遍历操作比线性数据结构更加复杂,往往需要使用搜索算法来实现。常见的二叉树遍历方式有层序遍历、前序遍历、中序遍历、后序遍历。
|
||||
|
||||
## 7.2.1. 层序遍历
|
||||
|
||||
「层序遍历 Hierarchical-Order Traversal」从顶至底、一层一层地遍历二叉树,并在每层中按照从左到右的顺序访问结点。
|
||||
|
||||
层序遍历本质上是「广度优先搜索 Breadth-First Traversal」,其体现着一种“一圈一圈向外”的层进遍历方式。
|
||||
|
||||

|
||||
|
||||
<p align="center"> Fig. 二叉树的层序遍历 </p>
|
||||
|
||||
广度优先遍历一般借助「队列」来实现。队列的规则是“先进先出”,广度优先遍历的规则是 ”一层层平推“ ,两者背后的思想是一致的。
|
||||
|
||||
=== "Java"
|
||||
|
||||
```java title="binary_tree_bfs.java"
|
||||
/* 层序遍历 */
|
||||
List<Integer> hierOrder(TreeNode root) {
|
||||
// 初始化队列,加入根结点
|
||||
Queue<TreeNode> queue = new LinkedList<>() {{ add(root); }};
|
||||
// 初始化一个列表,用于保存遍历序列
|
||||
List<Integer> list = new ArrayList<>();
|
||||
while (!queue.isEmpty()) {
|
||||
TreeNode node = queue.poll(); // 队列出队
|
||||
list.add(node.val); // 保存结点值
|
||||
if (node.left != null)
|
||||
queue.offer(node.left); // 左子结点入队
|
||||
if (node.right != null)
|
||||
queue.offer(node.right); // 右子结点入队
|
||||
}
|
||||
return list;
|
||||
}
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title="binary_tree_bfs.cpp"
|
||||
/* 层序遍历 */
|
||||
vector<int> hierOrder(TreeNode* root) {
|
||||
// 初始化队列,加入根结点
|
||||
queue<TreeNode*> queue;
|
||||
queue.push(root);
|
||||
// 初始化一个列表,用于保存遍历序列
|
||||
vector<int> vec;
|
||||
while (!queue.empty()) {
|
||||
TreeNode* node = queue.front();
|
||||
queue.pop(); // 队列出队
|
||||
vec.push_back(node->val); // 保存结点
|
||||
if (node->left != nullptr)
|
||||
queue.push(node->left); // 左子结点入队
|
||||
if (node->right != nullptr)
|
||||
queue.push(node->right); // 右子结点入队
|
||||
}
|
||||
return vec;
|
||||
}
|
||||
```
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title="binary_tree_bfs.py"
|
||||
""" 层序遍历 """
|
||||
def hier_order(root: Optional[TreeNode]):
|
||||
# 初始化队列,加入根结点
|
||||
queue = collections.deque()
|
||||
queue.append(root)
|
||||
# 初始化一个列表,用于保存遍历序列
|
||||
res = []
|
||||
while queue:
|
||||
node = queue.popleft() # 队列出队
|
||||
res.append(node.val) # 保存节点值
|
||||
if node.left is not None:
|
||||
queue.append(node.left) # 左子结点入队
|
||||
if node.right is not None:
|
||||
queue.append(node.right) # 右子结点入队
|
||||
return res
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title="binary_tree_bfs.go"
|
||||
/* 层序遍历 */
|
||||
func levelOrder(root *TreeNode) []int {
|
||||
// 初始化队列,加入根结点
|
||||
queue := list.New()
|
||||
queue.PushBack(root)
|
||||
// 初始化一个切片,用于保存遍历序列
|
||||
nums := make([]int, 0)
|
||||
for queue.Len() > 0 {
|
||||
// poll
|
||||
node := queue.Remove(queue.Front()).(*TreeNode)
|
||||
// 保存结点
|
||||
nums = append(nums, node.Val)
|
||||
if node.Left != nil {
|
||||
// 左子结点入队
|
||||
queue.PushBack(node.Left)
|
||||
}
|
||||
if node.Right != nil {
|
||||
// 右子结点入队
|
||||
queue.PushBack(node.Right)
|
||||
}
|
||||
}
|
||||
return nums
|
||||
}
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
|
||||
```js title="binary_tree_bfs.js"
|
||||
/* 层序遍历 */
|
||||
function hierOrder(root) {
|
||||
// 初始化队列,加入根结点
|
||||
let queue = [root];
|
||||
// 初始化一个列表,用于保存遍历序列
|
||||
let list = [];
|
||||
while (queue.length) {
|
||||
let node = queue.shift(); // 队列出队
|
||||
list.push(node.val); // 保存结点
|
||||
if (node.left)
|
||||
queue.push(node.left); // 左子结点入队
|
||||
if (node.right)
|
||||
queue.push(node.right); // 右子结点入队
|
||||
}
|
||||
return list;
|
||||
}
|
||||
```
|
||||
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript title="binary_tree_bfs.ts"
|
||||
/* 层序遍历 */
|
||||
function hierOrder(root: TreeNode | null): number[] {
|
||||
// 初始化队列,加入根结点
|
||||
const queue = [root];
|
||||
// 初始化一个列表,用于保存遍历序列
|
||||
const list: number[] = [];
|
||||
while (queue.length) {
|
||||
let node = queue.shift() as TreeNode; // 队列出队
|
||||
list.push(node.val); // 保存结点
|
||||
if (node.left) {
|
||||
queue.push(node.left); // 左子结点入队
|
||||
}
|
||||
if (node.right) {
|
||||
queue.push(node.right); // 右子结点入队
|
||||
}
|
||||
}
|
||||
return list;
|
||||
}
|
||||
```
|
||||
|
||||
=== "C"
|
||||
|
||||
```c title="binary_tree_bfs.c"
|
||||
|
||||
```
|
||||
|
||||
=== "C#"
|
||||
|
||||
```csharp title="binary_tree_bfs.cs"
|
||||
/* 层序遍历 */
|
||||
public List<int?> hierOrder(TreeNode root)
|
||||
{
|
||||
// 初始化队列,加入根结点
|
||||
Queue<TreeNode> queue = new();
|
||||
queue.Enqueue(root);
|
||||
// 初始化一个列表,用于保存遍历序列
|
||||
List<int> list = new();
|
||||
while (queue.Count != 0)
|
||||
{
|
||||
TreeNode node = queue.Dequeue(); // 队列出队
|
||||
list.Add(node.val); // 保存结点值
|
||||
if (node.left != null)
|
||||
queue.Enqueue(node.left); // 左子结点入队
|
||||
if (node.right != null)
|
||||
queue.Enqueue(node.right); // 右子结点入队
|
||||
}
|
||||
return list;
|
||||
}
|
||||
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title="binary_tree_bfs.swift"
|
||||
/* 层序遍历 */
|
||||
func hierOrder(root: TreeNode) -> [Int] {
|
||||
// 初始化队列,加入根结点
|
||||
var queue: [TreeNode] = [root]
|
||||
// 初始化一个列表,用于保存遍历序列
|
||||
var list: [Int] = []
|
||||
while !queue.isEmpty {
|
||||
let node = queue.removeFirst() // 队列出队
|
||||
list.append(node.val) // 保存结点
|
||||
if let left = node.left {
|
||||
queue.append(left) // 左子结点入队
|
||||
}
|
||||
if let right = node.right {
|
||||
queue.append(right) // 右子结点入队
|
||||
}
|
||||
}
|
||||
return list
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
||||
```zig title="binary_tree_bfs.zig"
|
||||
|
||||
```
|
||||
|
||||
## 7.2.2. 前序、中序、后序遍历
|
||||
|
||||
相对地,前、中、后序遍历皆属于「深度优先遍历 Depth-First Traversal」,其体现着一种“先走到尽头,再回头继续”的回溯遍历方式。
|
||||
|
||||
如下图所示,左侧是深度优先遍历的的示意图,右上方是对应的递归实现代码。深度优先遍历就像是绕着整个二叉树的外围“走”一圈,走的过程中,在每个结点都会遇到三个位置,分别对应前序遍历、中序遍历、后序遍历。
|
||||
|
||||

|
||||
|
||||
<p align="center"> Fig. 二叉树的前 / 中 / 后序遍历 </p>
|
||||
|
||||
<div class="center-table" markdown>
|
||||
|
||||
| 位置 | 含义 | 此处访问结点时对应 |
|
||||
| ---------- | ------------------------------------ | ----------------------------- |
|
||||
| 橙色圆圈处 | 刚进入此结点,即将访问该结点的左子树 | 前序遍历 Pre-Order Traversal |
|
||||
| 蓝色圆圈处 | 已访问完左子树,即将访问右子树 | 中序遍历 In-Order Traversal |
|
||||
| 紫色圆圈处 | 已访问完左子树和右子树,即将返回 | 后序遍历 Post-Order Traversal |
|
||||
|
||||
</div>
|
||||
|
||||
=== "Java"
|
||||
|
||||
```java title="binary_tree_dfs.java"
|
||||
/* 前序遍历 */
|
||||
void preOrder(TreeNode root) {
|
||||
if (root == null) return;
|
||||
// 访问优先级:根结点 -> 左子树 -> 右子树
|
||||
list.add(root.val);
|
||||
preOrder(root.left);
|
||||
preOrder(root.right);
|
||||
}
|
||||
|
||||
/* 中序遍历 */
|
||||
void inOrder(TreeNode root) {
|
||||
if (root == null) return;
|
||||
// 访问优先级:左子树 -> 根结点 -> 右子树
|
||||
inOrder(root.left);
|
||||
list.add(root.val);
|
||||
inOrder(root.right);
|
||||
}
|
||||
|
||||
/* 后序遍历 */
|
||||
void postOrder(TreeNode root) {
|
||||
if (root == null) return;
|
||||
// 访问优先级:左子树 -> 右子树 -> 根结点
|
||||
postOrder(root.left);
|
||||
postOrder(root.right);
|
||||
list.add(root.val);
|
||||
}
|
||||
```
|
||||
|
||||
=== "C++"
|
||||
|
||||
```cpp title="binary_tree_dfs.cpp"
|
||||
/* 前序遍历 */
|
||||
void preOrder(TreeNode* root) {
|
||||
if (root == nullptr) return;
|
||||
// 访问优先级:根结点 -> 左子树 -> 右子树
|
||||
vec.push_back(root->val);
|
||||
preOrder(root->left);
|
||||
preOrder(root->right);
|
||||
}
|
||||
|
||||
/* 中序遍历 */
|
||||
void inOrder(TreeNode* root) {
|
||||
if (root == nullptr) return;
|
||||
// 访问优先级:左子树 -> 根结点 -> 右子树
|
||||
inOrder(root->left);
|
||||
vec.push_back(root->val);
|
||||
inOrder(root->right);
|
||||
}
|
||||
|
||||
/* 后序遍历 */
|
||||
void postOrder(TreeNode* root) {
|
||||
if (root == nullptr) return;
|
||||
// 访问优先级:左子树 -> 右子树 -> 根结点
|
||||
postOrder(root->left);
|
||||
postOrder(root->right);
|
||||
vec.push_back(root->val);
|
||||
}
|
||||
```
|
||||
|
||||
=== "Python"
|
||||
|
||||
```python title="binary_tree_dfs.py"
|
||||
""" 前序遍历 """
|
||||
def pre_order(root: Optional[TreeNode]):
|
||||
if root is None:
|
||||
return
|
||||
# 访问优先级:根结点 -> 左子树 -> 右子树
|
||||
res.append(root.val)
|
||||
pre_order(root=root.left)
|
||||
pre_order(root=root.right)
|
||||
|
||||
""" 中序遍历 """
|
||||
def in_order(root: Optional[TreeNode]):
|
||||
if root is None:
|
||||
return
|
||||
# 访问优先级:左子树 -> 根结点 -> 右子树
|
||||
in_order(root=root.left)
|
||||
res.append(root.val)
|
||||
in_order(root=root.right)
|
||||
|
||||
""" 后序遍历 """
|
||||
def post_order(root: Optional[TreeNode]):
|
||||
if root is None:
|
||||
return
|
||||
# 访问优先级:左子树 -> 右子树 -> 根结点
|
||||
post_order(root=root.left)
|
||||
post_order(root=root.right)
|
||||
res.append(root.val)
|
||||
```
|
||||
|
||||
=== "Go"
|
||||
|
||||
```go title="binary_tree_dfs.go"
|
||||
/* 前序遍历 */
|
||||
func preOrder(node *TreeNode) {
|
||||
if node == nil {
|
||||
return
|
||||
}
|
||||
// 访问优先级:根结点 -> 左子树 -> 右子树
|
||||
nums = append(nums, node.Val)
|
||||
preOrder(node.Left)
|
||||
preOrder(node.Right)
|
||||
}
|
||||
|
||||
/* 中序遍历 */
|
||||
func inOrder(node *TreeNode) {
|
||||
if node == nil {
|
||||
return
|
||||
}
|
||||
// 访问优先级:左子树 -> 根结点 -> 右子树
|
||||
inOrder(node.Left)
|
||||
nums = append(nums, node.Val)
|
||||
inOrder(node.Right)
|
||||
}
|
||||
|
||||
/* 后序遍历 */
|
||||
func postOrder(node *TreeNode) {
|
||||
if node == nil {
|
||||
return
|
||||
}
|
||||
// 访问优先级:左子树 -> 右子树 -> 根结点
|
||||
postOrder(node.Left)
|
||||
postOrder(node.Right)
|
||||
nums = append(nums, node.Val)
|
||||
}
|
||||
```
|
||||
|
||||
=== "JavaScript"
|
||||
|
||||
```js title="binary_tree_dfs.js"
|
||||
/* 前序遍历 */
|
||||
function preOrder(root){
|
||||
if (root === null) return;
|
||||
// 访问优先级:根结点 -> 左子树 -> 右子树
|
||||
list.push(root.val);
|
||||
preOrder(root.left);
|
||||
preOrder(root.right);
|
||||
}
|
||||
|
||||
/* 中序遍历 */
|
||||
function inOrder(root) {
|
||||
if (root === null) return;
|
||||
// 访问优先级:左子树 -> 根结点 -> 右子树
|
||||
inOrder(root.left);
|
||||
list.push(root.val);
|
||||
inOrder(root.right);
|
||||
}
|
||||
|
||||
/* 后序遍历 */
|
||||
function postOrder(root) {
|
||||
if (root === null) return;
|
||||
// 访问优先级:左子树 -> 右子树 -> 根结点
|
||||
postOrder(root.left);
|
||||
postOrder(root.right);
|
||||
list.push(root.val);
|
||||
}
|
||||
```
|
||||
|
||||
=== "TypeScript"
|
||||
|
||||
```typescript title="binary_tree_dfs.ts"
|
||||
/* 前序遍历 */
|
||||
function preOrder(root: TreeNode | null): void {
|
||||
if (root === null) {
|
||||
return;
|
||||
}
|
||||
// 访问优先级:根结点 -> 左子树 -> 右子树
|
||||
list.push(root.val);
|
||||
preOrder(root.left);
|
||||
preOrder(root.right);
|
||||
}
|
||||
|
||||
/* 中序遍历 */
|
||||
function inOrder(root: TreeNode | null): void {
|
||||
if (root === null) {
|
||||
return;
|
||||
}
|
||||
// 访问优先级:左子树 -> 根结点 -> 右子树
|
||||
inOrder(root.left);
|
||||
list.push(root.val);
|
||||
inOrder(root.right);
|
||||
}
|
||||
|
||||
/* 后序遍历 */
|
||||
function postOrder(root: TreeNode | null): void {
|
||||
if (root === null) {
|
||||
return;
|
||||
}
|
||||
// 访问优先级:左子树 -> 右子树 -> 根结点
|
||||
postOrder(root.left);
|
||||
postOrder(root.right);
|
||||
list.push(root.val);
|
||||
}
|
||||
```
|
||||
|
||||
=== "C"
|
||||
|
||||
```c title="binary_tree_dfs.c"
|
||||
|
||||
```
|
||||
|
||||
=== "C#"
|
||||
|
||||
```csharp title="binary_tree_dfs.cs"
|
||||
/* 前序遍历 */
|
||||
void preOrder(TreeNode? root)
|
||||
{
|
||||
if (root == null) return;
|
||||
// 访问优先级:根结点 -> 左子树 -> 右子树
|
||||
list.Add(root.val);
|
||||
preOrder(root.left);
|
||||
preOrder(root.right);
|
||||
}
|
||||
|
||||
/* 中序遍历 */
|
||||
void inOrder(TreeNode? root)
|
||||
{
|
||||
if (root == null) return;
|
||||
// 访问优先级:左子树 -> 根结点 -> 右子树
|
||||
inOrder(root.left);
|
||||
list.Add(root.val);
|
||||
inOrder(root.right);
|
||||
}
|
||||
|
||||
/* 后序遍历 */
|
||||
void postOrder(TreeNode? root)
|
||||
{
|
||||
if (root == null) return;
|
||||
// 访问优先级:左子树 -> 右子树 -> 根结点
|
||||
postOrder(root.left);
|
||||
postOrder(root.right);
|
||||
list.Add(root.val);
|
||||
}
|
||||
```
|
||||
|
||||
=== "Swift"
|
||||
|
||||
```swift title="binary_tree_dfs.swift"
|
||||
/* 前序遍历 */
|
||||
func preOrder(root: TreeNode?) {
|
||||
guard let root = root else {
|
||||
return
|
||||
}
|
||||
// 访问优先级:根结点 -> 左子树 -> 右子树
|
||||
list.append(root.val)
|
||||
preOrder(root: root.left)
|
||||
preOrder(root: root.right)
|
||||
}
|
||||
|
||||
/* 中序遍历 */
|
||||
func inOrder(root: TreeNode?) {
|
||||
guard let root = root else {
|
||||
return
|
||||
}
|
||||
// 访问优先级:左子树 -> 根结点 -> 右子树
|
||||
inOrder(root: root.left)
|
||||
list.append(root.val)
|
||||
inOrder(root: root.right)
|
||||
}
|
||||
|
||||
/* 后序遍历 */
|
||||
func postOrder(root: TreeNode?) {
|
||||
guard let root = root else {
|
||||
return
|
||||
}
|
||||
// 访问优先级:左子树 -> 右子树 -> 根结点
|
||||
postOrder(root: root.left)
|
||||
postOrder(root: root.right)
|
||||
list.append(root.val)
|
||||
}
|
||||
```
|
||||
|
||||
=== "Zig"
|
||||
|
||||
```zig title="binary_tree_dfs.zig"
|
||||
|
||||
```
|
||||
|
||||
!!! note
|
||||
|
||||
使用循环一样可以实现前、中、后序遍历,但代码相对繁琐,有兴趣的同学可以自行实现。
|
||||
18
build/chapter_tree/summary.md
Normal file
18
build/chapter_tree/summary.md
Normal file
@@ -0,0 +1,18 @@
|
||||
---
|
||||
comments: true
|
||||
---
|
||||
|
||||
# 7.5. 小结
|
||||
|
||||
- 二叉树是一种非线性数据结构,代表着“一分为二”的分治逻辑。二叉树的结点包含「值」和两个「指针」,分别指向左子结点和右子结点。
|
||||
- 选定二叉树中某结点,将其左(右)子结点以下形成的树称为左(右)子树。
|
||||
- 二叉树的术语较多,包括根结点、叶结点、层、度、边、高度、深度等。
|
||||
- 二叉树的初始化、结点插入、结点删除操作与链表的操作方法类似。
|
||||
- 常见的二叉树类型包括完美二叉树、完全二叉树、完满二叉树、平衡二叉树。完美二叉树是理想状态,链表则是退化后的最差状态。
|
||||
- 二叉树可以使用数组表示,具体做法是将结点值和空位按照层序遍历的顺序排列,并基于父结点和子结点之间的索引映射公式实现指针。
|
||||
|
||||
- 二叉树层序遍历是一种广度优先搜索,体现着“一圈一圈向外”的层进式遍历方式,通常借助队列来实现。
|
||||
- 前序、中序、后序遍历是深度优先搜索,体现着“走到头、再回头继续”的回溯遍历方式,通常使用递归实现。
|
||||
- 二叉搜索树是一种高效的元素查找数据结构,查找、插入、删除操作的时间复杂度皆为 $O(\log n)$ 。二叉搜索树退化为链表后,各项时间复杂度劣化至 $O(n)$ ,因此如何避免退化是非常重要的课题。
|
||||
- AVL 树又称平衡二叉搜索树,其通过旋转操作,使得在不断插入与删除结点后,仍然可以保持二叉树的平衡(不退化)。
|
||||
- AVL 树的旋转操作分为右旋、左旋、先右旋后左旋、先左旋后右旋。在插入或删除结点后,AVL 树会从底至顶地执行旋转操作,使树恢复平衡。
|
||||
Reference in New Issue
Block a user