This commit is contained in:
krahets
2023-08-04 05:25:00 +08:00
parent 014ad545de
commit 63f09480fa
137 changed files with 8999 additions and 1143 deletions

View File

@ -1767,6 +1767,8 @@
@ -1835,14 +1837,50 @@
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search_insertion/" class="md-nav__link">
<span class="md-ellipsis">
10.2. &nbsp; 二分查找插入点
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
</li>
<li class="md-nav__item">
<a href="../../chapter_searching/binary_search_edge/" class="md-nav__link">
<span class="md-ellipsis">
10.2. &nbsp; 二分查找边界
10.3. &nbsp; 二分查找边界
</span>
<span class="md-status md-status--new" title="最近添加">
</span>
</a>
</li>
@ -1860,7 +1898,7 @@
<span class="md-ellipsis">
10.3. &nbsp; 哈希优化策略
10.4. &nbsp; 哈希优化策略
</span>
@ -1880,7 +1918,7 @@
<span class="md-ellipsis">
10.4. &nbsp; 重识搜索算法
10.5. &nbsp; 重识搜索算法
</span>
@ -1900,7 +1938,7 @@
<span class="md-ellipsis">
10.5. &nbsp; 小结
10.6. &nbsp; 小结
</span>
@ -3812,7 +3850,7 @@ dp[i] = dp[i-1] + dp[i-2]
<div class="highlight"><span class="filename">climbing_stairs_dfs.js</span><pre><span></span><code><a id="__codelineno-16-1" name="__codelineno-16-1" href="#__codelineno-16-1"></a><span class="cm">/* 搜索 */</span>
<a id="__codelineno-16-2" name="__codelineno-16-2" href="#__codelineno-16-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">dfs</span><span class="p">(</span><span class="nx">i</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-16-3" name="__codelineno-16-3" href="#__codelineno-16-3"></a><span class="w"> </span><span class="c1">// 已知 dp[1] 和 dp[2] ,返回之</span>
<a id="__codelineno-16-4" name="__codelineno-16-4" href="#__codelineno-16-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">i</span><span class="p">;</span>
<a id="__codelineno-16-4" name="__codelineno-16-4" href="#__codelineno-16-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">i</span><span class="p">;</span>
<a id="__codelineno-16-5" name="__codelineno-16-5" href="#__codelineno-16-5"></a><span class="w"> </span><span class="c1">// dp[i] = dp[i-1] + dp[i-2]</span>
<a id="__codelineno-16-6" name="__codelineno-16-6" href="#__codelineno-16-6"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dfs</span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">dfs</span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">2</span><span class="p">);</span>
<a id="__codelineno-16-7" name="__codelineno-16-7" href="#__codelineno-16-7"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
@ -3828,7 +3866,7 @@ dp[i] = dp[i-1] + dp[i-2]
<div class="highlight"><span class="filename">climbing_stairs_dfs.ts</span><pre><span></span><code><a id="__codelineno-17-1" name="__codelineno-17-1" href="#__codelineno-17-1"></a><span class="cm">/* 搜索 */</span>
<a id="__codelineno-17-2" name="__codelineno-17-2" href="#__codelineno-17-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">dfs</span><span class="p">(</span><span class="nx">i</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-17-3" name="__codelineno-17-3" href="#__codelineno-17-3"></a><span class="w"> </span><span class="c1">// 已知 dp[1] 和 dp[2] ,返回之</span>
<a id="__codelineno-17-4" name="__codelineno-17-4" href="#__codelineno-17-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">i</span><span class="p">;</span>
<a id="__codelineno-17-4" name="__codelineno-17-4" href="#__codelineno-17-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">i</span><span class="p">;</span>
<a id="__codelineno-17-5" name="__codelineno-17-5" href="#__codelineno-17-5"></a><span class="w"> </span><span class="c1">// dp[i] = dp[i-1] + dp[i-2]</span>
<a id="__codelineno-17-6" name="__codelineno-17-6" href="#__codelineno-17-6"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">count</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="nx">dfs</span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="nx">dfs</span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o">-</span><span class="w"> </span><span class="mf">2</span><span class="p">);</span>
<a id="__codelineno-17-7" name="__codelineno-17-7" href="#__codelineno-17-7"></a><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">count</span><span class="p">;</span>
@ -4041,7 +4079,7 @@ dp[i] = dp[i-1] + dp[i-2]
<div class="highlight"><span class="filename">climbing_stairs_dfs_mem.js</span><pre><span></span><code><a id="__codelineno-28-1" name="__codelineno-28-1" href="#__codelineno-28-1"></a><span class="cm">/* 记忆化搜索 */</span>
<a id="__codelineno-28-2" name="__codelineno-28-2" href="#__codelineno-28-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">dfs</span><span class="p">(</span><span class="nx">i</span><span class="p">,</span><span class="w"> </span><span class="nx">mem</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-28-3" name="__codelineno-28-3" href="#__codelineno-28-3"></a><span class="w"> </span><span class="c1">// 已知 dp[1] 和 dp[2] ,返回之</span>
<a id="__codelineno-28-4" name="__codelineno-28-4" href="#__codelineno-28-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">i</span><span class="p">;</span>
<a id="__codelineno-28-4" name="__codelineno-28-4" href="#__codelineno-28-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">i</span><span class="p">;</span>
<a id="__codelineno-28-5" name="__codelineno-28-5" href="#__codelineno-28-5"></a><span class="w"> </span><span class="c1">// 若存在记录 dp[i] ,则直接返回之</span>
<a id="__codelineno-28-6" name="__codelineno-28-6" href="#__codelineno-28-6"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">mem</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="o">-</span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">mem</span><span class="p">[</span><span class="nx">i</span><span class="p">];</span>
<a id="__codelineno-28-7" name="__codelineno-28-7" href="#__codelineno-28-7"></a><span class="w"> </span><span class="c1">// dp[i] = dp[i-1] + dp[i-2]</span>
@ -4063,7 +4101,7 @@ dp[i] = dp[i-1] + dp[i-2]
<div class="highlight"><span class="filename">climbing_stairs_dfs_mem.ts</span><pre><span></span><code><a id="__codelineno-29-1" name="__codelineno-29-1" href="#__codelineno-29-1"></a><span class="cm">/* 记忆化搜索 */</span>
<a id="__codelineno-29-2" name="__codelineno-29-2" href="#__codelineno-29-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">dfs</span><span class="p">(</span><span class="nx">i</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">,</span><span class="w"> </span><span class="nx">mem</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">[])</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-29-3" name="__codelineno-29-3" href="#__codelineno-29-3"></a><span class="w"> </span><span class="c1">// 已知 dp[1] 和 dp[2] ,返回之</span>
<a id="__codelineno-29-4" name="__codelineno-29-4" href="#__codelineno-29-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">i</span><span class="p">;</span>
<a id="__codelineno-29-4" name="__codelineno-29-4" href="#__codelineno-29-4"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">i</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">i</span><span class="p">;</span>
<a id="__codelineno-29-5" name="__codelineno-29-5" href="#__codelineno-29-5"></a><span class="w"> </span><span class="c1">// 若存在记录 dp[i] ,则直接返回之</span>
<a id="__codelineno-29-6" name="__codelineno-29-6" href="#__codelineno-29-6"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">mem</span><span class="p">[</span><span class="nx">i</span><span class="p">]</span><span class="w"> </span><span class="o">!=</span><span class="w"> </span><span class="o">-</span><span class="mf">1</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">mem</span><span class="p">[</span><span class="nx">i</span><span class="p">];</span>
<a id="__codelineno-29-7" name="__codelineno-29-7" href="#__codelineno-29-7"></a><span class="w"> </span><span class="c1">// dp[i] = dp[i-1] + dp[i-2]</span>
@ -4277,7 +4315,7 @@ dp[i] = dp[i-1] + dp[i-2]
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dp.js</span><pre><span></span><code><a id="__codelineno-40-1" name="__codelineno-40-1" href="#__codelineno-40-1"></a><span class="cm">/* 爬楼梯:动态规划 */</span>
<a id="__codelineno-40-2" name="__codelineno-40-2" href="#__codelineno-40-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">climbingStairsDP</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-40-3" name="__codelineno-40-3" href="#__codelineno-40-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span>
<a id="__codelineno-40-3" name="__codelineno-40-3" href="#__codelineno-40-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span>
<a id="__codelineno-40-4" name="__codelineno-40-4" href="#__codelineno-40-4"></a><span class="w"> </span><span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
<a id="__codelineno-40-5" name="__codelineno-40-5" href="#__codelineno-40-5"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="ow">new</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="o">-</span><span class="mf">1</span><span class="p">);</span>
<a id="__codelineno-40-6" name="__codelineno-40-6" href="#__codelineno-40-6"></a><span class="w"> </span><span class="c1">// 初始状态:预设最小子问题的解</span>
@ -4294,7 +4332,7 @@ dp[i] = dp[i-1] + dp[i-2]
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dp.ts</span><pre><span></span><code><a id="__codelineno-41-1" name="__codelineno-41-1" href="#__codelineno-41-1"></a><span class="cm">/* 爬楼梯:动态规划 */</span>
<a id="__codelineno-41-2" name="__codelineno-41-2" href="#__codelineno-41-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">climbingStairsDP</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-41-3" name="__codelineno-41-3" href="#__codelineno-41-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span>
<a id="__codelineno-41-3" name="__codelineno-41-3" href="#__codelineno-41-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span>
<a id="__codelineno-41-4" name="__codelineno-41-4" href="#__codelineno-41-4"></a><span class="w"> </span><span class="c1">// 初始化 dp 表,用于存储子问题的解</span>
<a id="__codelineno-41-5" name="__codelineno-41-5" href="#__codelineno-41-5"></a><span class="w"> </span><span class="kd">const</span><span class="w"> </span><span class="nx">dp</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="ow">new</span><span class="w"> </span><span class="nb">Array</span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">+</span><span class="w"> </span><span class="mf">1</span><span class="p">).</span><span class="nx">fill</span><span class="p">(</span><span class="o">-</span><span class="mf">1</span><span class="p">);</span>
<a id="__codelineno-41-6" name="__codelineno-41-6" href="#__codelineno-41-6"></a><span class="w"> </span><span class="c1">// 初始状态:预设最小子问题的解</span>
@ -4466,7 +4504,7 @@ dp[i] = dp[i-1] + dp[i-2]
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dp.js</span><pre><span></span><code><a id="__codelineno-52-1" name="__codelineno-52-1" href="#__codelineno-52-1"></a><span class="cm">/* 爬楼梯:状态压缩后的动态规划 */</span>
<a id="__codelineno-52-2" name="__codelineno-52-2" href="#__codelineno-52-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">climbingStairsDPComp</span><span class="p">(</span><span class="nx">n</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-52-3" name="__codelineno-52-3" href="#__codelineno-52-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span>
<a id="__codelineno-52-3" name="__codelineno-52-3" href="#__codelineno-52-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span>
<a id="__codelineno-52-4" name="__codelineno-52-4" href="#__codelineno-52-4"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span>
<a id="__codelineno-52-5" name="__codelineno-52-5" href="#__codelineno-52-5"></a><span class="w"> </span><span class="nx">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">2</span><span class="p">;</span>
<a id="__codelineno-52-6" name="__codelineno-52-6" href="#__codelineno-52-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">3</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>
@ -4481,7 +4519,7 @@ dp[i] = dp[i-1] + dp[i-2]
<div class="tabbed-block">
<div class="highlight"><span class="filename">climbing_stairs_dp.ts</span><pre><span></span><code><a id="__codelineno-53-1" name="__codelineno-53-1" href="#__codelineno-53-1"></a><span class="cm">/* 爬楼梯:状态压缩后的动态规划 */</span>
<a id="__codelineno-53-2" name="__codelineno-53-2" href="#__codelineno-53-2"></a><span class="kd">function</span><span class="w"> </span><span class="nx">climbingStairsDPComp</span><span class="p">(</span><span class="nx">n</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="p">)</span><span class="o">:</span><span class="w"> </span><span class="kt">number</span><span class="w"> </span><span class="p">{</span>
<a id="__codelineno-53-3" name="__codelineno-53-3" href="#__codelineno-53-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">==</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span>
<a id="__codelineno-53-3" name="__codelineno-53-3" href="#__codelineno-53-3"></a><span class="w"> </span><span class="k">if</span><span class="w"> </span><span class="p">(</span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">1</span><span class="w"> </span><span class="o">||</span><span class="w"> </span><span class="nx">n</span><span class="w"> </span><span class="o">===</span><span class="w"> </span><span class="mf">2</span><span class="p">)</span><span class="w"> </span><span class="k">return</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span>
<a id="__codelineno-53-4" name="__codelineno-53-4" href="#__codelineno-53-4"></a><span class="w"> </span><span class="kd">let</span><span class="w"> </span><span class="nx">a</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">1</span><span class="p">,</span>
<a id="__codelineno-53-5" name="__codelineno-53-5" href="#__codelineno-53-5"></a><span class="w"> </span><span class="nx">b</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">2</span><span class="p">;</span>
<a id="__codelineno-53-6" name="__codelineno-53-6" href="#__codelineno-53-6"></a><span class="w"> </span><span class="k">for</span><span class="w"> </span><span class="p">(</span><span class="kd">let</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">=</span><span class="w"> </span><span class="mf">3</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="w"> </span><span class="o">&lt;=</span><span class="w"> </span><span class="nx">n</span><span class="p">;</span><span class="w"> </span><span class="nx">i</span><span class="o">++</span><span class="p">)</span><span class="w"> </span><span class="p">{</span>