Unify punctuation.

This commit is contained in:
krahets
2023-07-26 08:59:36 +08:00
parent 35973068a7
commit 63a0e73df0
46 changed files with 201 additions and 201 deletions

View File

@@ -30,8 +30,8 @@
从原问题 $f(0, n-1)$ 为起始点,二分查找的分治步骤为:
1. 计算搜索区间 $[i, j]$ 的中点 $m$ ,根据它排除一半搜索区间
2. 递归求解规模减小一半的子问题,可能为 $f(i, m-1)$ 或 $f(m+1, j)$
1. 计算搜索区间 $[i, j]$ 的中点 $m$ ,根据它排除一半搜索区间
2. 递归求解规模减小一半的子问题,可能为 $f(i, m-1)$ 或 $f(m+1, j)$
3. 循环第 `1.` , `2.` 步,直至找到 `target` 或区间为空时返回。
下图展示了在数组中二分查找元素 $6$ 的分治过程。

View File

@@ -20,14 +20,14 @@
根据定义,`preorder``inorder` 都可以被划分为三个部分:
- 前序遍历:`[ 根节点 | 左子树 | 右子树 ]` ,例如上图 `[ 3 | 9 | 2 1 7 ]`
- 中序遍历:`[ 左子树 | 根节点 右子树 ]` ,例如上图 `[ 9 | 3 | 1 2 7 ]`
- 前序遍历:`[ 根节点 | 左子树 | 右子树 ]` ,例如上图 `[ 3 | 9 | 2 1 7 ]`
- 中序遍历:`[ 左子树 | 根节点 右子树 ]` ,例如上图 `[ 9 | 3 | 1 2 7 ]`
以上图数据为例,我们可以通过以下步骤得到上述的划分结果:
1. 前序遍历的首元素 3 是根节点的值
2. 查找根节点 3 在 `inorder` 中的索引,利用该索引可将 `inorder` 划分为 `[ 9 | 3 1 2 7 ]`
3. 根据 `inorder` 划分结果,易得左子树和右子树的节点数量分别为 1 和 3 ,从而可将 `preorder` 划分为 `[ 3 | 9 | 2 1 7 ]`
1. 前序遍历的首元素 3 是根节点的值
2. 查找根节点 3 在 `inorder` 中的索引,利用该索引可将 `inorder` 划分为 `[ 9 | 3 1 2 7 ]`
3. 根据 `inorder` 划分结果,易得左子树和右子树的节点数量分别为 1 和 3 ,从而可将 `preorder` 划分为 `[ 3 | 9 | 2 1 7 ]`
![在前序和中序遍历中划分子树](build_binary_tree_problem.assets/build_tree_preorder_inorder_division.png)
@@ -35,9 +35,9 @@
根据以上划分方法,**我们已经得到根节点、左子树、右子树在 `preorder``inorder` 中的索引区间**。而为了描述这些索引区间,我们需要借助几个指针变量:
- 将当前树的根节点在 `preorder` 中的索引记为 $i$
- 将当前树的根节点在 `inorder` 中的索引记为 $m$
- 将当前树在 `inorder` 中的索引区间记为 $[l, r]$
- 将当前树的根节点在 `preorder` 中的索引记为 $i$
- 将当前树的根节点在 `inorder` 中的索引记为 $m$
- 将当前树在 `inorder` 中的索引区间记为 $[l, r]$
如下表所示,通过以上变量即可表示根节点在 `preorder` 中的索引,以及子树在 `inorder` 中的索引区间。

View File

@@ -2,8 +2,8 @@
「分治 Divide and Conquer」全称分而治之是一种非常重要且常见的算法策略。分治通常基于递归实现包括“分”和“治”两步
1. **分(划分阶段)**:递归地将原问题分解为两个或多个子问题,直至到达最小子问题时终止
2. **治(合并阶段)**:从已知解的最小子问题开始,从底至顶地将子问题的解进行合并,从而构建出原问题的解
1. **分(划分阶段)**:递归地将原问题分解为两个或多个子问题,直至到达最小子问题时终止
2. **治(合并阶段)**:从已知解的最小子问题开始,从底至顶地将子问题的解进行合并,从而构建出原问题的解
已介绍过的「归并排序」是分治策略的典型应用之一,它的分治策略为:
@@ -22,9 +22,9 @@
显然归并排序,满足以上三条判断依据:
1. 递归地将数组(原问题)划分为两个子数组(子问题)
2. 每个子数组都可以独立地进行排序(子问题可以独立进行求解)
3. 两个有序子数组(子问题的解)可以被合并为一个有序数组(原问题的解)
1. 递归地将数组(原问题)划分为两个子数组(子问题)
2. 每个子数组都可以独立地进行排序(子问题可以独立进行求解)
3. 两个有序子数组(子问题的解)可以被合并为一个有序数组(原问题的解)
## 通过分治提升效率

View File

@@ -6,9 +6,9 @@
给定三根柱子,记为 `A` , `B` , `C` 。起始状态下,柱子 `A` 上套着 $n$ 个圆盘,它们从上到下按照从小到大的顺序排列。我们的任务是要把这 $n$ 个圆盘移到柱子 `C` 上,并保持它们的原有顺序不变。在移动圆盘的过程中,需要遵守以下规则:
1. 圆盘只能从一个柱子顶部拿出,从另一个柱子顶部放入
2. 每次只能移动一个圆盘
3. 小圆盘必须时刻位于大圆盘之上
1. 圆盘只能从一个柱子顶部拿出,从另一个柱子顶部放入
2. 每次只能移动一个圆盘
3. 小圆盘必须时刻位于大圆盘之上
![汉诺塔问题示例](hanota_problem.assets/hanota_example.png)
@@ -26,9 +26,9 @@
对于问题 $f(2)$ ,即当有两个圆盘时,**由于要时刻满足小圆盘在大圆盘之上,因此需要借助 `B` 来完成移动**,包括三步:
1. 先将上面的小圆盘从 `A` 移至 `B`
2. 再将大圆盘从 `A` 移至 `C`
3. 最后将小圆盘从 `B` 移至 `C`
1. 先将上面的小圆盘从 `A` 移至 `B`
2. 再将大圆盘从 `A` 移至 `C`
3. 最后将小圆盘从 `B` 移至 `C`
解决问题 $f(2)$ 的过程可总结为:**将两个圆盘借助 `B``A` 移至 `C`** 。其中,`C` 称为目标柱、`B` 称为缓冲柱。
@@ -48,9 +48,9 @@
对于问题 $f(3)$ ,即当有三个圆盘时,情况变得稍微复杂了一些。由于已知 $f(1)$ 和 $f(2)$ 的解,因此可从分治角度思考,**将 `A` 顶部的两个圆盘看做一个整体**,执行以下步骤:
1.`B` 为目标柱、`C` 为缓冲柱,将两个圆盘从 `A` 移动至 `B`
2.`A` 中剩余的一个圆盘从 `A` 直接移动至 `C`
3.`C` 为目标柱、`A` 为缓冲柱,将两个圆盘从 `B` 移动至 `C`
1.`B` 为目标柱、`C` 为缓冲柱,将两个圆盘从 `A` 移动至 `B`
2.`A` 中剩余的一个圆盘从 `A` 直接移动至 `C`
3.`C` 为目标柱、`A` 为缓冲柱,将两个圆盘从 `B` 移动至 `C`
这样三个圆盘就被顺利地从 `A` 移动至 `C` 了。
@@ -70,9 +70,9 @@
至此,我们可总结出汉诺塔问题的分治策略:将原问题 $f(n)$ 划分为两个子问题 $f(n-1)$ 和一个子问题 $f(1)$ 。子问题的解决顺序为:
1. 将 $n-1$ 个圆盘借助 `C``A` 移至 `B`
2. 将剩余 $1$ 个圆盘从 `A` 直接移至 `C`
3. 将 $n-1$ 个圆盘借助 `A``B` 移至 `C`
1. 将 $n-1$ 个圆盘借助 `C``A` 移至 `B`
2. 将剩余 $1$ 个圆盘从 `A` 直接移至 `C`
3. 将 $n-1$ 个圆盘借助 `A``B` 移至 `C`
对于这两个子问题 $f(n-1)$ **可以通过相同的方式进行递归划分**,直至达到最小子问题 $f(1)$ 。而 $f(1)$ 的解是已知的,只需一次移动操作即可。