mirror of
https://github.com/krahets/hello-algo.git
synced 2025-07-07 23:04:55 +08:00
fix binary_search_tree code
This commit is contained in:
@ -13,33 +13,18 @@ from modules import *
|
||||
class BinarySearchTree:
|
||||
"""二叉搜索树"""
|
||||
|
||||
def __init__(self, nums: list[int]):
|
||||
def __init__(self):
|
||||
"""构造方法"""
|
||||
nums.sort()
|
||||
self.root = self.build_tree(nums, 0, len(nums) - 1)
|
||||
# 初始化空树
|
||||
self.__root = None
|
||||
|
||||
def build_tree(
|
||||
self, nums: list[int], start_index: int, end_index: int
|
||||
) -> TreeNode | None:
|
||||
"""构建二叉搜索树"""
|
||||
if start_index > end_index:
|
||||
return None
|
||||
|
||||
# 将数组中间节点作为根节点
|
||||
mid = (start_index + end_index) // 2
|
||||
root = TreeNode(nums[mid])
|
||||
# 递归建立左子树和右子树
|
||||
root.left = self.build_tree(
|
||||
nums=nums, start_index=start_index, end_index=mid - 1
|
||||
)
|
||||
root.right = self.build_tree(
|
||||
nums=nums, start_index=mid + 1, end_index=end_index
|
||||
)
|
||||
return root
|
||||
def get_root(self) -> TreeNode | None:
|
||||
"""获取二叉树根节点"""
|
||||
return self.__root
|
||||
|
||||
def search(self, num: int) -> TreeNode | None:
|
||||
"""查找节点"""
|
||||
cur: TreeNode | None = self.root
|
||||
cur = self.__root
|
||||
# 循环查找,越过叶节点后跳出
|
||||
while cur is not None:
|
||||
# 目标节点在 cur 的右子树中
|
||||
@ -55,12 +40,12 @@ class BinarySearchTree:
|
||||
|
||||
def insert(self, num: int):
|
||||
"""插入节点"""
|
||||
# 若树为空,直接提前返回
|
||||
if self.root is None:
|
||||
# 若树为空,则初始化根节点
|
||||
if self.__root is None:
|
||||
self.__root = TreeNode(num)
|
||||
return
|
||||
|
||||
# 循环查找,越过叶节点后跳出
|
||||
cur, pre = self.root, None
|
||||
cur, pre = self.__root, None
|
||||
while cur is not None:
|
||||
# 找到重复节点,直接返回
|
||||
if cur.val == num:
|
||||
@ -72,7 +57,6 @@ class BinarySearchTree:
|
||||
# 插入位置在 cur 的左子树中
|
||||
else:
|
||||
cur = cur.left
|
||||
|
||||
# 插入节点
|
||||
node = TreeNode(num)
|
||||
if pre.val < num:
|
||||
@ -83,11 +67,10 @@ class BinarySearchTree:
|
||||
def remove(self, num: int):
|
||||
"""删除节点"""
|
||||
# 若树为空,直接提前返回
|
||||
if self.root is None:
|
||||
if self.__root is None:
|
||||
return
|
||||
|
||||
# 循环查找,越过叶节点后跳出
|
||||
cur, pre = self.root, None
|
||||
cur, pre = self.__root, None
|
||||
while cur is not None:
|
||||
# 找到待删除节点,跳出循环
|
||||
if cur.val == num:
|
||||
@ -108,14 +91,14 @@ class BinarySearchTree:
|
||||
# 当子节点数量 = 0 / 1 时, child = null / 该子节点
|
||||
child = cur.left or cur.right
|
||||
# 删除节点 cur
|
||||
if cur != self.root:
|
||||
if cur != self.__root:
|
||||
if pre.left == cur:
|
||||
pre.left = child
|
||||
else:
|
||||
pre.right = child
|
||||
else:
|
||||
# 若删除节点为根节点,则重新指定根节点
|
||||
self.root = child
|
||||
self.__root = child
|
||||
# 子节点数量 = 2
|
||||
else:
|
||||
# 获取中序遍历中 cur 的下一个节点
|
||||
@ -131,10 +114,13 @@ class BinarySearchTree:
|
||||
"""Driver Code"""
|
||||
if __name__ == "__main__":
|
||||
# 初始化二叉搜索树
|
||||
nums = list(range(1, 16)) # [1, 2, ..., 15]
|
||||
bst = BinarySearchTree(nums=nums)
|
||||
bst = BinarySearchTree()
|
||||
nums = [8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15]
|
||||
# 请注意,不同的插入顺序会生成不同的二叉树,该序列可以生成一个完美二叉树
|
||||
for num in nums:
|
||||
bst.insert(num)
|
||||
print("\n初始化的二叉树为\n")
|
||||
print_tree(bst.root)
|
||||
print_tree(bst.get_root())
|
||||
|
||||
# 查找节点
|
||||
node = bst.search(7)
|
||||
@ -143,17 +129,17 @@ if __name__ == "__main__":
|
||||
# 插入节点
|
||||
bst.insert(16)
|
||||
print("\n插入节点 16 后,二叉树为\n")
|
||||
print_tree(bst.root)
|
||||
print_tree(bst.get_root())
|
||||
|
||||
# 删除节点
|
||||
bst.remove(1)
|
||||
print("\n删除节点 1 后,二叉树为\n")
|
||||
print_tree(bst.root)
|
||||
print_tree(bst.get_root())
|
||||
|
||||
bst.remove(2)
|
||||
print("\n删除节点 2 后,二叉树为\n")
|
||||
print_tree(bst.root)
|
||||
print_tree(bst.get_root())
|
||||
|
||||
bst.remove(4)
|
||||
print("\n删除节点 4 后,二叉树为\n")
|
||||
print_tree(bst.root)
|
||||
print_tree(bst.get_root())
|
||||
|
Reference in New Issue
Block a user