mirror of
https://github.com/krahets/hello-algo.git
synced 2025-07-05 05:01:43 +08:00
Update H1 titles.
This commit is contained in:
@ -26,10 +26,10 @@
|
||||
|
||||
由于实际测试具有较大的局限性,我们可以考虑仅通过一些计算来评估算法的效率。这种估算方法被称为「渐近复杂度分析 Asymptotic Complexity Analysis」,简称为「复杂度分析」。
|
||||
|
||||
**复杂度分析评估的是算法运行效率随着输入数据量增多时的增长趋势**。这个定义有些拗口,我们可以将其分为三个重点来理解:
|
||||
复杂度分析评估的是算法执行所需的时间和空间资源。**它被表示为一个函数,描述了随着输入数据大小的增加,算法所需时间(空间)的增长趋势**。这个定义有些拗口,我们可以将其分为三个重点来理解:
|
||||
|
||||
1. “算法运行效率”可分为运行时间和占用空间两部分,与之对应地,复杂度可分为「时间复杂度 Time Complexity」和「空间复杂度 Space Complexity」。
|
||||
2. “随着输入数据量增多时”意味着复杂度反映了算法运行效率与输入数据量之间的关系。
|
||||
1. “时间(空间)”分别对应「时间复杂度 Time Complexity」和「空间复杂度 Space Complexity」。
|
||||
2. “随着输入数据大小的增加”意味着复杂度反映了算法运行效率与输入数据体量之间的关系。
|
||||
3. “增长趋势”表示复杂度分析关注的是算法时间与空间的增长趋势,而非具体的运行时间或占用空间。
|
||||
|
||||
**复杂度分析克服了实际测试方法的弊端**。首先,它独立于测试环境,分析结果适用于所有运行平台。其次,它可以体现不同数据量下的算法效率,尤其是在大数据量下的算法性能。
|
||||
|
Reference in New Issue
Block a user