feat: Traditional Chinese version (#1163)

* First commit

* Update mkdocs.yml

* Translate all the docs to traditional Chinese

* Translate the code files.

* Translate the docker file

* Fix mkdocs.yml

* Translate all the figures from SC to TC

* 二叉搜尋樹 -> 二元搜尋樹

* Update terminology.

* Update terminology

* 构造函数/构造方法 -> 建構子
异或 -> 互斥或

* 擴充套件 -> 擴展

* constant - 常量 - 常數

* 類	-> 類別

* AVL -> AVL 樹

* 數組 -> 陣列

* 係統 -> 系統
斐波那契數列 -> 費波那契數列
運算元量 -> 運算量
引數 -> 參數

* 聯絡 -> 關聯

* 麵試 -> 面試

* 面向物件 -> 物件導向
歸併排序 -> 合併排序
范式 -> 範式

* Fix 算法 -> 演算法

* 錶示 -> 表示
反碼 -> 一補數
補碼 -> 二補數
列列尾部 -> 佇列尾部
區域性性 -> 區域性
一摞 -> 一疊

* Synchronize with main branch

* 賬號 -> 帳號
推匯 -> 推導

* Sync with main branch

* First commit

* Update mkdocs.yml

* Translate all the docs to traditional Chinese

* Translate the code files.

* Translate the docker file

* Fix mkdocs.yml

* Translate all the figures from SC to TC

* 二叉搜尋樹 -> 二元搜尋樹

* Update terminology

* 构造函数/构造方法 -> 建構子
异或 -> 互斥或

* 擴充套件 -> 擴展

* constant - 常量 - 常數

* 類	-> 類別

* AVL -> AVL 樹

* 數組 -> 陣列

* 係統 -> 系統
斐波那契數列 -> 費波那契數列
運算元量 -> 運算量
引數 -> 參數

* 聯絡 -> 關聯

* 麵試 -> 面試

* 面向物件 -> 物件導向
歸併排序 -> 合併排序
范式 -> 範式

* Fix 算法 -> 演算法

* 錶示 -> 表示
反碼 -> 一補數
補碼 -> 二補數
列列尾部 -> 佇列尾部
區域性性 -> 區域性
一摞 -> 一疊

* Synchronize with main branch

* 賬號 -> 帳號
推匯 -> 推導

* Sync with main branch

* Update terminology.md

* 操作数量(num. of operations)-> 操作數量

* 字首和->前綴和

* Update figures

* 歸 -> 迴
記憶體洩漏 -> 記憶體流失

* Fix the bug of the file filter

* 支援 -> 支持
Add zh-Hant/README.md

* Add the zh-Hant chapter covers.
Bug fixes.

* 外掛 -> 擴充功能

* Add the landing page for zh-Hant version

* Unify the font of the chapter covers for the zh, en, and zh-Hant version

* Move zh-Hant/ to zh-hant/

* Translate terminology.md to traditional Chinese
This commit is contained in:
Yudong Jin
2024-04-06 02:30:11 +08:00
committed by GitHub
parent 33d7f8a2e5
commit 5f7385c8a3
1875 changed files with 102923 additions and 18 deletions

View File

@ -0,0 +1,37 @@
"""
File: climbing_stairs_backtrack.py
Created Time: 2023-06-30
Author: krahets (krahets@163.com)
"""
def backtrack(choices: list[int], state: int, n: int, res: list[int]) -> int:
"""回溯"""
# 當爬到第 n 階時,方案數量加 1
if state == n:
res[0] += 1
# 走訪所有選擇
for choice in choices:
# 剪枝:不允許越過第 n 階
if state + choice > n:
continue
# 嘗試:做出選擇,更新狀態
backtrack(choices, state + choice, n, res)
# 回退
def climbing_stairs_backtrack(n: int) -> int:
"""爬樓梯:回溯"""
choices = [1, 2] # 可選擇向上爬 1 階或 2 階
state = 0 # 從第 0 階開始爬
res = [0] # 使用 res[0] 記錄方案數量
backtrack(choices, state, n, res)
return res[0]
"""Driver Code"""
if __name__ == "__main__":
n = 9
res = climbing_stairs_backtrack(n)
print(f"{n} 階樓梯共有 {res} 種方案")

View File

@ -0,0 +1,29 @@
"""
File: climbing_stairs_constraint_dp.py
Created Time: 2023-06-30
Author: krahets (krahets@163.com)
"""
def climbing_stairs_constraint_dp(n: int) -> int:
"""帶約束爬樓梯:動態規劃"""
if n == 1 or n == 2:
return 1
# 初始化 dp 表,用於儲存子問題的解
dp = [[0] * 3 for _ in range(n + 1)]
# 初始狀態:預設最小子問題的解
dp[1][1], dp[1][2] = 1, 0
dp[2][1], dp[2][2] = 0, 1
# 狀態轉移:從較小子問題逐步求解較大子問題
for i in range(3, n + 1):
dp[i][1] = dp[i - 1][2]
dp[i][2] = dp[i - 2][1] + dp[i - 2][2]
return dp[n][1] + dp[n][2]
"""Driver Code"""
if __name__ == "__main__":
n = 9
res = climbing_stairs_constraint_dp(n)
print(f"{n} 階樓梯共有 {res} 種方案")

View File

@ -0,0 +1,28 @@
"""
File: climbing_stairs_dfs.py
Created Time: 2023-06-30
Author: krahets (krahets@163.com)
"""
def dfs(i: int) -> int:
"""搜尋"""
# 已知 dp[1] 和 dp[2] ,返回之
if i == 1 or i == 2:
return i
# dp[i] = dp[i-1] + dp[i-2]
count = dfs(i - 1) + dfs(i - 2)
return count
def climbing_stairs_dfs(n: int) -> int:
"""爬樓梯:搜尋"""
return dfs(n)
"""Driver Code"""
if __name__ == "__main__":
n = 9
res = climbing_stairs_dfs(n)
print(f"{n} 階樓梯共有 {res} 種方案")

View File

@ -0,0 +1,35 @@
"""
File: climbing_stairs_dfs_mem.py
Created Time: 2023-06-30
Author: krahets (krahets@163.com)
"""
def dfs(i: int, mem: list[int]) -> int:
"""記憶化搜尋"""
# 已知 dp[1] 和 dp[2] ,返回之
if i == 1 or i == 2:
return i
# 若存在記錄 dp[i] ,則直接返回之
if mem[i] != -1:
return mem[i]
# dp[i] = dp[i-1] + dp[i-2]
count = dfs(i - 1, mem) + dfs(i - 2, mem)
# 記錄 dp[i]
mem[i] = count
return count
def climbing_stairs_dfs_mem(n: int) -> int:
"""爬樓梯:記憶化搜尋"""
# mem[i] 記錄爬到第 i 階的方案總數,-1 代表無記錄
mem = [-1] * (n + 1)
return dfs(n, mem)
"""Driver Code"""
if __name__ == "__main__":
n = 9
res = climbing_stairs_dfs_mem(n)
print(f"{n} 階樓梯共有 {res} 種方案")

View File

@ -0,0 +1,40 @@
"""
File: climbing_stairs_dp.py
Created Time: 2023-06-30
Author: krahets (krahets@163.com)
"""
def climbing_stairs_dp(n: int) -> int:
"""爬樓梯:動態規劃"""
if n == 1 or n == 2:
return n
# 初始化 dp 表,用於儲存子問題的解
dp = [0] * (n + 1)
# 初始狀態:預設最小子問題的解
dp[1], dp[2] = 1, 2
# 狀態轉移:從較小子問題逐步求解較大子問題
for i in range(3, n + 1):
dp[i] = dp[i - 1] + dp[i - 2]
return dp[n]
def climbing_stairs_dp_comp(n: int) -> int:
"""爬樓梯:空間最佳化後的動態規劃"""
if n == 1 or n == 2:
return n
a, b = 1, 2
for _ in range(3, n + 1):
a, b = b, a + b
return b
"""Driver Code"""
if __name__ == "__main__":
n = 9
res = climbing_stairs_dp(n)
print(f"{n} 階樓梯共有 {res} 種方案")
res = climbing_stairs_dp_comp(n)
print(f"{n} 階樓梯共有 {res} 種方案")

View File

@ -0,0 +1,60 @@
"""
File: coin_change.py
Created Time: 2023-07-10
Author: krahets (krahets@163.com)
"""
def coin_change_dp(coins: list[int], amt: int) -> int:
"""零錢兌換:動態規劃"""
n = len(coins)
MAX = amt + 1
# 初始化 dp 表
dp = [[0] * (amt + 1) for _ in range(n + 1)]
# 狀態轉移:首行首列
for a in range(1, amt + 1):
dp[0][a] = MAX
# 狀態轉移:其餘行和列
for i in range(1, n + 1):
for a in range(1, amt + 1):
if coins[i - 1] > a:
# 若超過目標金額,則不選硬幣 i
dp[i][a] = dp[i - 1][a]
else:
# 不選和選硬幣 i 這兩種方案的較小值
dp[i][a] = min(dp[i - 1][a], dp[i][a - coins[i - 1]] + 1)
return dp[n][amt] if dp[n][amt] != MAX else -1
def coin_change_dp_comp(coins: list[int], amt: int) -> int:
"""零錢兌換:空間最佳化後的動態規劃"""
n = len(coins)
MAX = amt + 1
# 初始化 dp 表
dp = [MAX] * (amt + 1)
dp[0] = 0
# 狀態轉移
for i in range(1, n + 1):
# 正序走訪
for a in range(1, amt + 1):
if coins[i - 1] > a:
# 若超過目標金額,則不選硬幣 i
dp[a] = dp[a]
else:
# 不選和選硬幣 i 這兩種方案的較小值
dp[a] = min(dp[a], dp[a - coins[i - 1]] + 1)
return dp[amt] if dp[amt] != MAX else -1
"""Driver Code"""
if __name__ == "__main__":
coins = [1, 2, 5]
amt = 4
# 動態規劃
res = coin_change_dp(coins, amt)
print(f"湊到目標金額所需的最少硬幣數量為 {res}")
# 空間最佳化後的動態規劃
res = coin_change_dp_comp(coins, amt)
print(f"湊到目標金額所需的最少硬幣數量為 {res}")

View File

@ -0,0 +1,58 @@
"""
File: coin_change_ii.py
Created Time: 2023-07-10
Author: krahets (krahets@163.com)
"""
def coin_change_ii_dp(coins: list[int], amt: int) -> int:
"""零錢兌換 II動態規劃"""
n = len(coins)
# 初始化 dp 表
dp = [[0] * (amt + 1) for _ in range(n + 1)]
# 初始化首列
for i in range(n + 1):
dp[i][0] = 1
# 狀態轉移
for i in range(1, n + 1):
for a in range(1, amt + 1):
if coins[i - 1] > a:
# 若超過目標金額,則不選硬幣 i
dp[i][a] = dp[i - 1][a]
else:
# 不選和選硬幣 i 這兩種方案之和
dp[i][a] = dp[i - 1][a] + dp[i][a - coins[i - 1]]
return dp[n][amt]
def coin_change_ii_dp_comp(coins: list[int], amt: int) -> int:
"""零錢兌換 II空間最佳化後的動態規劃"""
n = len(coins)
# 初始化 dp 表
dp = [0] * (amt + 1)
dp[0] = 1
# 狀態轉移
for i in range(1, n + 1):
# 正序走訪
for a in range(1, amt + 1):
if coins[i - 1] > a:
# 若超過目標金額,則不選硬幣 i
dp[a] = dp[a]
else:
# 不選和選硬幣 i 這兩種方案之和
dp[a] = dp[a] + dp[a - coins[i - 1]]
return dp[amt]
"""Driver Code"""
if __name__ == "__main__":
coins = [1, 2, 5]
amt = 5
# 動態規劃
res = coin_change_ii_dp(coins, amt)
print(f"湊出目標金額的硬幣組合數量為 {res}")
# 空間最佳化後的動態規劃
res = coin_change_ii_dp_comp(coins, amt)
print(f"湊出目標金額的硬幣組合數量為 {res}")

View File

@ -0,0 +1,123 @@
"""
File: edit_distancde.py
Created Time: 2023-07-04
Author: krahets (krahets@163.com)
"""
def edit_distance_dfs(s: str, t: str, i: int, j: int) -> int:
"""編輯距離:暴力搜尋"""
# 若 s 和 t 都為空,則返回 0
if i == 0 and j == 0:
return 0
# 若 s 為空,則返回 t 長度
if i == 0:
return j
# 若 t 為空,則返回 s 長度
if j == 0:
return i
# 若兩字元相等,則直接跳過此兩字元
if s[i - 1] == t[j - 1]:
return edit_distance_dfs(s, t, i - 1, j - 1)
# 最少編輯步數 = 插入、刪除、替換這三種操作的最少編輯步數 + 1
insert = edit_distance_dfs(s, t, i, j - 1)
delete = edit_distance_dfs(s, t, i - 1, j)
replace = edit_distance_dfs(s, t, i - 1, j - 1)
# 返回最少編輯步數
return min(insert, delete, replace) + 1
def edit_distance_dfs_mem(s: str, t: str, mem: list[list[int]], i: int, j: int) -> int:
"""編輯距離:記憶化搜尋"""
# 若 s 和 t 都為空,則返回 0
if i == 0 and j == 0:
return 0
# 若 s 為空,則返回 t 長度
if i == 0:
return j
# 若 t 為空,則返回 s 長度
if j == 0:
return i
# 若已有記錄,則直接返回之
if mem[i][j] != -1:
return mem[i][j]
# 若兩字元相等,則直接跳過此兩字元
if s[i - 1] == t[j - 1]:
return edit_distance_dfs_mem(s, t, mem, i - 1, j - 1)
# 最少編輯步數 = 插入、刪除、替換這三種操作的最少編輯步數 + 1
insert = edit_distance_dfs_mem(s, t, mem, i, j - 1)
delete = edit_distance_dfs_mem(s, t, mem, i - 1, j)
replace = edit_distance_dfs_mem(s, t, mem, i - 1, j - 1)
# 記錄並返回最少編輯步數
mem[i][j] = min(insert, delete, replace) + 1
return mem[i][j]
def edit_distance_dp(s: str, t: str) -> int:
"""編輯距離:動態規劃"""
n, m = len(s), len(t)
dp = [[0] * (m + 1) for _ in range(n + 1)]
# 狀態轉移:首行首列
for i in range(1, n + 1):
dp[i][0] = i
for j in range(1, m + 1):
dp[0][j] = j
# 狀態轉移:其餘行和列
for i in range(1, n + 1):
for j in range(1, m + 1):
if s[i - 1] == t[j - 1]:
# 若兩字元相等,則直接跳過此兩字元
dp[i][j] = dp[i - 1][j - 1]
else:
# 最少編輯步數 = 插入、刪除、替換這三種操作的最少編輯步數 + 1
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j], dp[i - 1][j - 1]) + 1
return dp[n][m]
def edit_distance_dp_comp(s: str, t: str) -> int:
"""編輯距離:空間最佳化後的動態規劃"""
n, m = len(s), len(t)
dp = [0] * (m + 1)
# 狀態轉移:首行
for j in range(1, m + 1):
dp[j] = j
# 狀態轉移:其餘行
for i in range(1, n + 1):
# 狀態轉移:首列
leftup = dp[0] # 暫存 dp[i-1, j-1]
dp[0] += 1
# 狀態轉移:其餘列
for j in range(1, m + 1):
temp = dp[j]
if s[i - 1] == t[j - 1]:
# 若兩字元相等,則直接跳過此兩字元
dp[j] = leftup
else:
# 最少編輯步數 = 插入、刪除、替換這三種操作的最少編輯步數 + 1
dp[j] = min(dp[j - 1], dp[j], leftup) + 1
leftup = temp # 更新為下一輪的 dp[i-1, j-1]
return dp[m]
"""Driver Code"""
if __name__ == "__main__":
s = "bag"
t = "pack"
n, m = len(s), len(t)
# 暴力搜尋
res = edit_distance_dfs(s, t, n, m)
print(f"{s} 更改為 {t} 最少需要編輯 {res}")
# 記憶化搜尋
mem = [[-1] * (m + 1) for _ in range(n + 1)]
res = edit_distance_dfs_mem(s, t, mem, n, m)
print(f"{s} 更改為 {t} 最少需要編輯 {res}")
# 動態規劃
res = edit_distance_dp(s, t)
print(f"{s} 更改為 {t} 最少需要編輯 {res}")
# 空間最佳化後的動態規劃
res = edit_distance_dp_comp(s, t)
print(f"{s} 更改為 {t} 最少需要編輯 {res}")

View File

@ -0,0 +1,101 @@
"""
File: knapsack.py
Created Time: 2023-07-03
Author: krahets (krahets@163.com)
"""
def knapsack_dfs(wgt: list[int], val: list[int], i: int, c: int) -> int:
"""0-1 背包:暴力搜尋"""
# 若已選完所有物品或背包無剩餘容量,則返回價值 0
if i == 0 or c == 0:
return 0
# 若超過背包容量,則只能選擇不放入背包
if wgt[i - 1] > c:
return knapsack_dfs(wgt, val, i - 1, c)
# 計算不放入和放入物品 i 的最大價值
no = knapsack_dfs(wgt, val, i - 1, c)
yes = knapsack_dfs(wgt, val, i - 1, c - wgt[i - 1]) + val[i - 1]
# 返回兩種方案中價值更大的那一個
return max(no, yes)
def knapsack_dfs_mem(
wgt: list[int], val: list[int], mem: list[list[int]], i: int, c: int
) -> int:
"""0-1 背包:記憶化搜尋"""
# 若已選完所有物品或背包無剩餘容量,則返回價值 0
if i == 0 or c == 0:
return 0
# 若已有記錄,則直接返回
if mem[i][c] != -1:
return mem[i][c]
# 若超過背包容量,則只能選擇不放入背包
if wgt[i - 1] > c:
return knapsack_dfs_mem(wgt, val, mem, i - 1, c)
# 計算不放入和放入物品 i 的最大價值
no = knapsack_dfs_mem(wgt, val, mem, i - 1, c)
yes = knapsack_dfs_mem(wgt, val, mem, i - 1, c - wgt[i - 1]) + val[i - 1]
# 記錄並返回兩種方案中價值更大的那一個
mem[i][c] = max(no, yes)
return mem[i][c]
def knapsack_dp(wgt: list[int], val: list[int], cap: int) -> int:
"""0-1 背包:動態規劃"""
n = len(wgt)
# 初始化 dp 表
dp = [[0] * (cap + 1) for _ in range(n + 1)]
# 狀態轉移
for i in range(1, n + 1):
for c in range(1, cap + 1):
if wgt[i - 1] > c:
# 若超過背包容量,則不選物品 i
dp[i][c] = dp[i - 1][c]
else:
# 不選和選物品 i 這兩種方案的較大值
dp[i][c] = max(dp[i - 1][c], dp[i - 1][c - wgt[i - 1]] + val[i - 1])
return dp[n][cap]
def knapsack_dp_comp(wgt: list[int], val: list[int], cap: int) -> int:
"""0-1 背包:空間最佳化後的動態規劃"""
n = len(wgt)
# 初始化 dp 表
dp = [0] * (cap + 1)
# 狀態轉移
for i in range(1, n + 1):
# 倒序走訪
for c in range(cap, 0, -1):
if wgt[i - 1] > c:
# 若超過背包容量,則不選物品 i
dp[c] = dp[c]
else:
# 不選和選物品 i 這兩種方案的較大值
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])
return dp[cap]
"""Driver Code"""
if __name__ == "__main__":
wgt = [10, 20, 30, 40, 50]
val = [50, 120, 150, 210, 240]
cap = 50
n = len(wgt)
# 暴力搜尋
res = knapsack_dfs(wgt, val, n, cap)
print(f"不超過背包容量的最大物品價值為 {res}")
# 記憶化搜尋
mem = [[-1] * (cap + 1) for _ in range(n + 1)]
res = knapsack_dfs_mem(wgt, val, mem, n, cap)
print(f"不超過背包容量的最大物品價值為 {res}")
# 動態規劃
res = knapsack_dp(wgt, val, cap)
print(f"不超過背包容量的最大物品價值為 {res}")
# 空間最佳化後的動態規劃
res = knapsack_dp_comp(wgt, val, cap)
print(f"不超過背包容量的最大物品價值為 {res}")

View File

@ -0,0 +1,43 @@
"""
File: min_cost_climbing_stairs_dp.py
Created Time: 2023-06-30
Author: krahets (krahets@163.com)
"""
def min_cost_climbing_stairs_dp(cost: list[int]) -> int:
"""爬樓梯最小代價:動態規劃"""
n = len(cost) - 1
if n == 1 or n == 2:
return cost[n]
# 初始化 dp 表,用於儲存子問題的解
dp = [0] * (n + 1)
# 初始狀態:預設最小子問題的解
dp[1], dp[2] = cost[1], cost[2]
# 狀態轉移:從較小子問題逐步求解較大子問題
for i in range(3, n + 1):
dp[i] = min(dp[i - 1], dp[i - 2]) + cost[i]
return dp[n]
def min_cost_climbing_stairs_dp_comp(cost: list[int]) -> int:
"""爬樓梯最小代價:空間最佳化後的動態規劃"""
n = len(cost) - 1
if n == 1 or n == 2:
return cost[n]
a, b = cost[1], cost[2]
for i in range(3, n + 1):
a, b = b, min(a, b) + cost[i]
return b
"""Driver Code"""
if __name__ == "__main__":
cost = [0, 1, 10, 1, 1, 1, 10, 1, 1, 10, 1]
print(f"輸入樓梯的代價串列為 {cost}")
res = min_cost_climbing_stairs_dp(cost)
print(f"爬完樓梯的最低代價為 {res}")
res = min_cost_climbing_stairs_dp_comp(cost)
print(f"爬完樓梯的最低代價為 {res}")

View File

@ -0,0 +1,104 @@
"""
File: min_path_sum.py
Created Time: 2023-07-04
Author: krahets (krahets@163.com)
"""
from math import inf
def min_path_sum_dfs(grid: list[list[int]], i: int, j: int) -> int:
"""最小路徑和:暴力搜尋"""
# 若為左上角單元格,則終止搜尋
if i == 0 and j == 0:
return grid[0][0]
# 若行列索引越界,則返回 +∞ 代價
if i < 0 or j < 0:
return inf
# 計算從左上角到 (i-1, j) 和 (i, j-1) 的最小路徑代價
up = min_path_sum_dfs(grid, i - 1, j)
left = min_path_sum_dfs(grid, i, j - 1)
# 返回從左上角到 (i, j) 的最小路徑代價
return min(left, up) + grid[i][j]
def min_path_sum_dfs_mem(
grid: list[list[int]], mem: list[list[int]], i: int, j: int
) -> int:
"""最小路徑和:記憶化搜尋"""
# 若為左上角單元格,則終止搜尋
if i == 0 and j == 0:
return grid[0][0]
# 若行列索引越界,則返回 +∞ 代價
if i < 0 or j < 0:
return inf
# 若已有記錄,則直接返回
if mem[i][j] != -1:
return mem[i][j]
# 左邊和上邊單元格的最小路徑代價
up = min_path_sum_dfs_mem(grid, mem, i - 1, j)
left = min_path_sum_dfs_mem(grid, mem, i, j - 1)
# 記錄並返回左上角到 (i, j) 的最小路徑代價
mem[i][j] = min(left, up) + grid[i][j]
return mem[i][j]
def min_path_sum_dp(grid: list[list[int]]) -> int:
"""最小路徑和:動態規劃"""
n, m = len(grid), len(grid[0])
# 初始化 dp 表
dp = [[0] * m for _ in range(n)]
dp[0][0] = grid[0][0]
# 狀態轉移:首行
for j in range(1, m):
dp[0][j] = dp[0][j - 1] + grid[0][j]
# 狀態轉移:首列
for i in range(1, n):
dp[i][0] = dp[i - 1][0] + grid[i][0]
# 狀態轉移:其餘行和列
for i in range(1, n):
for j in range(1, m):
dp[i][j] = min(dp[i][j - 1], dp[i - 1][j]) + grid[i][j]
return dp[n - 1][m - 1]
def min_path_sum_dp_comp(grid: list[list[int]]) -> int:
"""最小路徑和:空間最佳化後的動態規劃"""
n, m = len(grid), len(grid[0])
# 初始化 dp 表
dp = [0] * m
# 狀態轉移:首行
dp[0] = grid[0][0]
for j in range(1, m):
dp[j] = dp[j - 1] + grid[0][j]
# 狀態轉移:其餘行
for i in range(1, n):
# 狀態轉移:首列
dp[0] = dp[0] + grid[i][0]
# 狀態轉移:其餘列
for j in range(1, m):
dp[j] = min(dp[j - 1], dp[j]) + grid[i][j]
return dp[m - 1]
"""Driver Code"""
if __name__ == "__main__":
grid = [[1, 3, 1, 5], [2, 2, 4, 2], [5, 3, 2, 1], [4, 3, 5, 2]]
n, m = len(grid), len(grid[0])
# 暴力搜尋
res = min_path_sum_dfs(grid, n - 1, m - 1)
print(f"從左上角到右下角的做小路徑和為 {res}")
# 記憶化搜尋
mem = [[-1] * m for _ in range(n)]
res = min_path_sum_dfs_mem(grid, mem, n - 1, m - 1)
print(f"從左上角到右下角的做小路徑和為 {res}")
# 動態規劃
res = min_path_sum_dp(grid)
print(f"從左上角到右下角的做小路徑和為 {res}")
# 空間最佳化後的動態規劃
res = min_path_sum_dp_comp(grid)
print(f"從左上角到右下角的做小路徑和為 {res}")

View File

@ -0,0 +1,55 @@
"""
File: unbounded_knapsack.py
Created Time: 2023-07-10
Author: krahets (krahets@163.com)
"""
def unbounded_knapsack_dp(wgt: list[int], val: list[int], cap: int) -> int:
"""完全背包:動態規劃"""
n = len(wgt)
# 初始化 dp 表
dp = [[0] * (cap + 1) for _ in range(n + 1)]
# 狀態轉移
for i in range(1, n + 1):
for c in range(1, cap + 1):
if wgt[i - 1] > c:
# 若超過背包容量,則不選物品 i
dp[i][c] = dp[i - 1][c]
else:
# 不選和選物品 i 這兩種方案的較大值
dp[i][c] = max(dp[i - 1][c], dp[i][c - wgt[i - 1]] + val[i - 1])
return dp[n][cap]
def unbounded_knapsack_dp_comp(wgt: list[int], val: list[int], cap: int) -> int:
"""完全背包:空間最佳化後的動態規劃"""
n = len(wgt)
# 初始化 dp 表
dp = [0] * (cap + 1)
# 狀態轉移
for i in range(1, n + 1):
# 正序走訪
for c in range(1, cap + 1):
if wgt[i - 1] > c:
# 若超過背包容量,則不選物品 i
dp[c] = dp[c]
else:
# 不選和選物品 i 這兩種方案的較大值
dp[c] = max(dp[c], dp[c - wgt[i - 1]] + val[i - 1])
return dp[cap]
"""Driver Code"""
if __name__ == "__main__":
wgt = [1, 2, 3]
val = [5, 11, 15]
cap = 4
# 動態規劃
res = unbounded_knapsack_dp(wgt, val, cap)
print(f"不超過背包容量的最大物品價值為 {res}")
# 空間最佳化後的動態規劃
res = unbounded_knapsack_dp_comp(wgt, val, cap)
print(f"不超過背包容量的最大物品價值為 {res}")